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Abstract

Environmental stresses and climatic changes present escalating challenges for
global agriculture and food security. Quinoa (Chenopodium quinoa Willd.),
known for its adaptability and nutritional richness, presents itself as an excellent
genetic resource to overcome the challenges of the 21%t century. This
dissertation was conducted to comprehensively evaluate quinoa accessions with
distinct genetic backgrounds and select the most promising genotypes.
Employing a multifaceted approach encompassing field experiments and
subsequent laboratory analysis, the thesis aimed to elucidate the interplay
between genotype variations, environmental influences, and processing
methods in shaping quinoa's overall nutritional profile. The assessment of
quinoa seeds revealed significant variability in studied traits across genotypes
and cultivation years; however, certain genotypes, including "Mint Vanilla’,
"Cahuil A’, "Cohamamba B’, ‘Braunschweig B, "Apelawa A1’, 'Red Head B’,
Tsluga A’, and ‘QQ87" demonstrated stability in selected parameters. Six
compounds (2-OH-cinnamic acid, homoorientin, luteolin, naringenin, N-
feruloyl octopamine, and 4-OH-benzaldehyde) were identified and quantified
in quinoa seeds for the first time. The nutritional profile of quinoa seeds is
further influenced by heat-utilizing methods from which roasting and
microwaving were identified as superior methods for enhancing polyphenol
content, whereas flaking improved the protein content. Nonetheless, the degree
of change in nutritional profile varied depending on the duration of heat
treatment applied to the seeds. Germination also emerged as a promising
strategy to boost the nutritional attributes, particularly increasing the content of
specific bioactive metabolites, albeit with variation by genotype and
germination duration. In the face of unfavorable environmental conditions that
may impact seed harvest and quality, cultivating quinoa for its leaves emerges
as an alternative approach, with "Faro (Prague)’, 'Red Head A", "Isluga A", and
'DE-1" identified as genotypes with suitable nutritional content in their leaves.
This dissertation revealed the conveniences of quinoa performance and
underscored the significance of quinoa germplasm preservation as a crucial
component of quinoa breeding initiatives and variety development. Quinoa
seeds and leaves emerged as a rich source of nutrients and bioactive compounds
that can be further enhanced or degraded through specific processing
techniques.

Keywords: genetic resources, germination, protein, phenolics, thermal
processing, quinoa



Abstrakt

Klimatické zmény predstavuji stale veétsi vyzvy pro globalni zemédélstvi a
potravinovou bezpeénost. Quinoa (Chenopodium quinoa Willd.), neboli merlik
Cilsky, je rostlina znama svou adaptibilitou a pfiznivym nutriénim profilem.
Z toho dtivodu se také jevi jako slibny geneticky zdroj pro prekonani vyzev 21.
stoleti. Tato diserta¢ni prace byla zaméfena na komplexni zhodnoceni rozsahlé
kolekce genotypli quinoy za vyuziti polnich pokust i laboratornich analyz,
scilem vybrat nejperspektivnéj§i genotypy vhodné pro péstovani
v klimatickych podminkach stfedni Evropy i pro Slechténi novych odrud
S pozadovanymi vlastnostmi. Diiraz byl kladen na stanoveni vlivu genotypu,
prostfedi a zpracovani semen na formovani celkového nutricniho profilu
quinoy. Hodnocenim genotypt a ro¢niku byla potvrzena vyznamna variabilita
V hodnocenych znacich. Nicméné nékteré genotypy, naptiklad "Mint Vanilla’,
"Cahuil A’, "Cohamamba B’, ‘Braunschweig B, "Apelawa A1’, 'Red Head B’,
‘Tsluga A" a "QQ87’, vykazovaly stabilitu ve vybranych nutri¢nich parametrech
i vramci hodnocenych ro¢nikti. V semenech quinoy bylo identifikovano a
kvantifikovano Sest novych fenolickych sloucenin (2-hydroxyskoficova
kyselina, homoorientin, luteolin, naringenin, N-feruloyl oktopamin a 4-OH-
benzaldehyd). Obsah nutri¢nich latek v semenech quinoy byl dale ovlivnén
tepelnym zpracovanim, pfiCemz prazeni a mikrovinna piiprava byly
identifikovany jako nejvhodnéjsi metody pro zvyseni obsahu polyfenoli,
zatimco vlo¢kovani zlepsilo obsah bilkovin. Nicméné mira zmén Vv nutriénim
profilu se lisila v zavislosti na délce zpracovani. Kli¢eni se ukazalo jako vhodna
strategie pro zlepSeni nékterych nutriénich atributii, zejména pak pro zvySeni
obsahu nékterych bioaktivnich latek. Mira tohoto narustu vSak zavisela na
genotypu a délce kliceni. Dale byla prace zaméfena na nutri¢ni vlastnosti listd,
které se jevi jako vhodny alternativni zdroj potravy v klimatickych oblastech,
které neumoziuji péstovani quinoy pro semeno. Genotypy Faro (Prague)’,
‘Red Head A’, 'Isluga A" a '‘DE-1" byly identifikovany jako genotypy s
vhodnym obsahem analyzovanych nutricnich latek. Tato disertacni prace
poukézala na benefity quinoy a zdtraznila vyznam uchovani jejich genetickych
materidlli jako kli¢ové soucasti iniciativ zamétujicich se na Slechténi a vyvoj
odriid. Semena i listy quinoy se ukazaly jako bohaty zdroj zivin a bioaktivnich
latek, které mohou byt dale ovlivnény podminkami prostiedi a technikami
zpracovani.

Klicova slova: genetické zdroje, kliceni, bilkoviny, fenolické latky, tepelné
zpracovani, quinoa
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1. General introduction and thesis framework

Quinoa (Chenopodium quinoa Willd.), once a staple crop confined to the
Andean regions, has gained global attention due to its exceptional adaptability
and nutritional richness. Quinoa has been emerging as a strategic crop for food
security and economic growth, especially in Andean regions and potentially in
Europe.

In the last decade, two milestones in quinoa research have significantly
advanced our understanding and utilization of this crop. The year 2013 was
particularly significant, as it was declared the "International Year of Quinoa"
by the Food and Agriculture Organization (FAO et al., 2013b), resulting in the
worldwide promotion of this pseudocereal. Later, in 2017, the complete
genome sequence of quinoa was published, providing insights into quinoa
evolutionary history and identification of mechanisms likely controlling the
production of saponins, that will significantly help direct future breeding
strategies (Jarvis et al., 2017).

Nutritional evaluation of quinoa has also seen substantial progress. Researchers
have extensively profiled the macronutrient and micronutrient content of
quinoa seeds, underscoring their irreplaceable role in a balanced human diet
(Prager et al., 2018; Reguera et al., 2018; Craine and Murphy et al., 2020;
Granado-Rodriguez et al., 2021b; Craine et al., 2023). Moreover, the various
compounds with potential biological activities in quinoa have been identified
(Tang et al., 2016b; Lin et al., 2019; Liu et al., 2020a; Tabatabei et al., 2022).

Despite these advancements, several gaps persist in quinoa research. One major
limitation is the insufficient understanding of quinoa’s adaptability and
performance in non-native environments. While there have been efforts to
introduce quinoa to various regions (Alandia et al., 2020), comprehensive
studies evaluating its agronomic and nutritional performance across diverse
climates are still insufficient. Further, those studies are often constrained by the
evaluation of a limited number of analyzed samples, lack of long-term
cultivation comparisons, and/or a limited number of attributes used for the
evaluation of quinoa genetic resources.

Additionally, there is a need for in-depth and comprehensive research on the
nutritional changes that quinoa undergoes during processing. Most studies
focus on raw quinoa seeds, overlooking the fact that quinoa is typically
consumed after processing, which can significantly alter its nutritional
composition and bioavailability. Similarly, the potential of quinoa leaves as an
alternative food source has been largely overlooked, in spite of their



considerable potential as a source of nutrients, especially in marginal
environments (Goémez et al., 2024).

This dissertation made significant strides in addressing these research gaps,
offering new insights and discoveries that advance the current understanding of
quinoa. One of the key contributions of this dissertation is the complex
nutritional and morphological evaluation of a wide spectrum of quinoa
genotypes under climatic conditions of the Czech Republic for 4 years. This is
a pioneering effort, as it represents the first extensive assessment of quinoa’s
performance in this region. Additionally, the dissertation thesis brings new and
valuable information by identifying genotypes and traits with low
responsiveness to changing weather conditions across cultivation years,
highlighting their potential for stable production in diverse environmental
scenarios. The findings provide invaluable data for future breeding programs
aimed at developing varieties suited for specific climatic conditions of Central
Europe.

Furthermore, the application of UHPLC-ESI-MS/MS instrumentation in this
research represents a significant methodological advancement. The high
precision and accuracy of this method enable comprehensive profiling of
quinoa's metabolome, providing novel information on the biochemical changes
under different cultivation conditions. By employing this methodology, the
thesis further described so far little-known metabolomic dynamics during
quinoa germination and thermal processing.

Although there are studies suggesting the implementation of quinoa leaves in
the human diet, the research related to this area is yet scarce, often missing a
larger number of studied samples. To ensure that the full range of nutritional
variations is captured and to provide a better understanding of the species'
nutritional potential, a diverse array of quinoa genetic materials was evaluated
in terms of the content of protein, polyphenols, and antioxidant activity in their
leaves. Specific samples with the potential to be used in future breeding were
identified.

Concerning the research contextualization, it is essential to clarify the
terminology employed throughout the study; in particular, the term "genotype”,
which occurs in Chapters 1, 3, 4, and 5. This term is utilized to refer to the
quinoa samples under investigation, obtained from the U. S. National Plant
Germplasm System; and from Gene Bank, Crop Research Institute (CRI).
These samples are currently included in a so-called working collection in the
CRI Gene Bank, meaning that plant material is tested in field conditions and
further assessed in the laboratory, however, it is not yet included in the active



collections. Further, studied samples are not officially registered
cultivars/varieties in the Czech Republic, hence they are called genotypes. The
choice of this terminology was also aiming to provide clarity and consistency
for the readers throughout the thesis. Conversely, plant material was referred to
as variety, cultivar, landrace, and genotype predominantly in Chapter 2,
following the nomenclature used by the respective authors of the referenced
studies.

1.1.  Aims of the thesis

The main goal of the dissertation was a comprehensive chemical and nutritional
characterization of an extensive collection of quinoa accession in order to
identify genotypes with superior and stable nutritional value which provide
essential and complex information for quinoa breeding purposes. Additionally,
another objective was to evaluate various food processing methods applied to
quinoa seeds to identify techniques that significantly enhance the nutritional
content of the final product.

The partial aims focused on the assessment and evaluation of:

- morphological traits of quinoa plants in the experimental field

- protein content in quinoa seeds and leaves;

- phenolic content, phenolic composition, and antioxidant activity in
quinoa seeds;

- phenolic content and antioxidant activity in quinoa leaves;

- changes in nutritional content and composition in thermally processed
quinoa seeds;

- changes in nutritional content and composition in germinated quinoa
seeds;

- changes in nutritional content and composition in quinoa seeds
cultivated in distinct weather conditions.

The following hypotheses were adopted:

I.  The content of proteins, bioactive compounds, and antioxidant activity
in quinoa seeds vary significantly among different genotypes;
Il. The process of germination significantly alters nutritional content and
composition (proteins, bioactive compounds, and antioxidant activity);
I1l.  Changes in the nutritional profile during the germination process are
genotype-dependent;



VI.

VII.

Different thermal preparation methods applied to quinoa seeds lead to
significant variations in their nutritional content and composition
(protein content, bioactive compounds, and antioxidant activity);
Quinoa leaves exhibit higher protein content compared to quinoa seeds;
Variations in weather conditions significantly impact the content and
composition of nutritional parameters (proteins, bioactive compounds,
and antioxidant activity) in quinoa seeds;

Variations in weather conditions significantly impact the morphological
traits of quinoa plants.



2. Nutritional value and variability of quinoa
genetic resources in diverse environments

Adapted from: Hlasna Cepkové. P., Dostalikova, L., Viehmannova, I., Jagr,
M., Janovska, D. (2022). Diversity of quinoa genetic resources for sustainable
production: A survey on nutritive characteristics as influenced by
environmental conditions. Frontiers in Sustainable Food Systems 6:960159.
https://doi.org/10.3389/fsufs.2022.960159

(Review paper)

CRediT author statement: Author PHC: Conceptualization, Resources,
Writing — original draft preparation, Writing — review and editing, Funding
Acquisition; Author LD: Resources, Writing — original draft preparation;
Author VI: Writing — review and editing, Funding Acquisition; Author MJ:
Writing — review and editing; Author DJ: Conceptualization, Writing — review
and editing, Supervision, Funding Acquisition.
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Abstract

Environmental extremes and climatic variability have enhanced the changes in
numerous plant stressors. Researchers have been working to improve “major”
crops for several decades to make them more adaptable and tolerant to
environmental stresses. However, neglected and underutilized crop species that
have the potential to ensure food and nutritional security for the ever-growing
global population have received little or no research attention. Quinoa is one of
these crops. This pseudocereal is considered a rich and balanced food resource
due to its protein content and protein quality, high mineral content, and health
benefits. This review provides currently available information on the genetic
resources of quinoa and their quality in terms of variability of economically
important traits such as yield, and the content and composition of a wide
spectrum of nutritional parameters. The influence of variety and environmental
conditions on selected traits is also discussed. The various types of nutrients
present in the different varieties form the basis and they are the key element for
future breeding efforts and efficient, healthy, and sustainable food production.



2.1. Introduction

Most staple foods comprise grain crops; therefore, feeding the ever-increasing
global population means increasing the production of these crops (Bvenura and
Kambizi, 2022). However, it is well known that climate change is rapidly
degrading the conditions of crop production. Salinization and aridity are
forecasted to increase in most parts of the world (Choukr-Allah et al., 2016).
Moreover, globally, the food crisis is mainly triggered by shocks such as
drought and escalated by trade restrictions leading to price rises as an impact of
the COVID-19 pandemic and as a consequence of the current war in Ukraine
(Rahut et al., 2022).

Therefore, new stress-tolerant or new alternative crops or species must be
identified and used for future food security (Choukr-Allah et al., 2016). The
present situation is that common wheat, rice, and maize as major crops seem to
be near 80% of their potential. This shows the potential of many small-scale
and marginal crops and wild plants that can be used as high-quality food
sources. Since many of these species are well adapted to extreme environments,
their role in the current scenario of climate change has become extremely
important (Chrungoo and Chettry, 2021).

These crops have the potential to complement the major cereals and play a
greater role in a safe household diet. A better understanding of these crops that
feed the world and their potential role in nutrition will help secure their future
and ensure food and nutrition security. Chenopodium quinoa Willd. was
selected as one of the crops that will contribute to food security in the twenty-
first century, because of its high resilience to extreme environmental
conditions, its qualities as a functional food (Bvenura and Kambizi, 2022;
Singh et al., 2022), and as a potential strategic crop that plays a vital role in
food security and sovereignty (Rojas et al., 2015).

In addition, quinoa has gained importance in international consumer markets in
the last decade, which provides economic opportunities for Andean producers
(Anaya et al., 2022). On the other hand, quinoa could be used for crop
diversification in Europe and other parts of the world, outside of its genetic
origin, as an alternative for marginal agricultural land (Jacobsen, 2017).

In the present work, we attempt to summarize the available information about
quinoa genetic resources for the whole world by highlighting the situation in
the Czech Republic. We also explored the results of current research focused
on nutraceutical properties, including carbohydrates, lipids, proteins, amino
acids, secondary metabolites, vitamins, and minerals. This overview provides
an insight into the enormous variability of morpho-phenological traits and



nutritive components that are possessed by quinoa germplasm cultivated in
different global conditions and shows us how important it is to conserve and
protect this richness.

2.2.  Quinoa origin and ecotypes

Quinoa is taxonomically categorized as a pseudocereal within the genus
Chenopodium, family Amaranthaceae (Royal Botanic Gardens Kew, n.d.).
Although quinoa is currently cultivated across the globe in temperate,
subtropical and tropical regions (Alandia et al., 2020), its primary place of
origin is traced to Lake Titicaca, situated along the border of Peru and Bolivia,
South America. Archaeological findings suggest that quinoa was domesticated
in this region approximately 7,000 years ago. Through the agricultural practices
of ancient Andean civilizations, quinoa gradually disseminated northward and
southward from its epicenter (Bazile et al., 2013; Fuentes et al., 2012).

Over millennia of domestication, selection, and adaptation to diverse climatic
and soil conditions, quinoa has reached considerable genetic diversity. Based
on distinct sub-centers of diversity, quinoa is categorized into five ecotypes:
Salares, Highlands (Altiplano), Inter-Andean Valley, Yungas, and Sea-Level
(Coastal lowlands), each endowed with specific traits enabling adaptation to
their respective habitats (Bazile et al., 2013).

According to Jacobsen (2017), Coastal lowland ecotypes exhibit promising
potential for incorporation into the development of new varieties suitable for
cultivation in northern latitudes of Europe, especially due to their insensitivity
to day length variations, which is considered a major problem for the
introduction of quinoa to North European conditions (Bendevis et al., 2014;
Christiansen et al., 2010). Further, the Salares ecotype, thriving in
environments of cold deserts with extremely low precipitation (Bazile et al.,
2013), is considered one of the most drought-resistant ecotypes among others
(Raney et al., 2014). On the other hand, Inter-Andean Valley accessions are
commonly cultivated for their ample foliage, utilized as a leafy vegetable in
their native habitats (Bazile et al., 2013) due to their low harvest index (Gomez-
Pando, 2015).

2.3. Botanical description of quinoa

Quinoa is a herbaceous annual plant that exhibits a remarkable diversity in
morphological traits. Quinoa plants can attain heights of up to 3 meters,
featuring either branched or unbranched stems (Gomez-Pando, 2015). Stem



morphology typically manifests angular shape with green or colored striae
(Manjarres-Hernandez et al., 2021). Stem coloration ranges across a spectrum
from green, yellow, and orange to pink, purple, black, or red (Biodiversity
International et al., 2013) (Figure 2.1).

& o/ 4 > S o P2 ” h - :
Figure 2.1 Variability in stem and striae coloration of quinoa accessions
cultivated on the experimental fields of Crop Research Institute in Prague,

Czech Republic. Noticeable striae are indicated by white arrows.

o

The leaves of quinoa also exhibit significant variation in shape, including
lanceolate, rhomboidal, or triangular forms, as well as in the number of teeth
along the leaf margins, ranging from 3 to 48. Generally, lower leaves tend to be
larger with a higher number of teeth compared to the smaller upper leaves
(Gomez-Pando & Eguiluz de la Barra, 2011; Rojas, 2003) (Figure 2.2). The
coloration of leaves may transform to green, red, purple, or orange at various
stages of quinoa development (Gomez-Pando & Eguiluz de la Barra, 2011).



Figure 2.2 Variability in leaf morphology in different quinoa accessions grown
in the experimental fields of Crop Research Institute in Prague, Czech
Republic. Young leaves near inflorescence display creamy (a) and purple (b)
coloration (indicated by arrows), low number of teeth and lanceolate shape.
Older leaves have rhomboid-like shape and green coloration with increased
number of teeth.

The inflorescence of quinoa has the form of a panicle, characterized by varying
lengths of pedicels, which classify the panicle into loose, medium, or compact.
Within quinoa, three distinct types of inflorescences are identified —
glomerulate, amaranthiforme, and intermediate (transition type) (Figure 2.3)
(Biodiversity International et al., 2013), exhibiting lengths spanning from 15 to
70 cm (Rojas, 2003).

(@)

Figure 2.3 Three types of quinoa inflorescence (Biodiversity International et
al., 2013)

(@ glomerulate inflorescence; (b) intermediate inflorescence; (c)
amaranthiforme inflorescence
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The coloration of inflorescence includes a diverse array of hues (Figure 2.4),
such as green, yellow, orange, red, purple, brown, gray, or black, with
pigmentation undergoing alterations across different developmental stages
(Biodiversity International et al., 2013; Fuentes & Bhargava, 2011; Gomez-
Pando & Eguiluz de la Barra, 2011). Quinoa is predominantly a self-pollinator;
however, both intra- and interspecific outcrossing phenomena have been
documented in the literature, ranging from 3.81% to 19.88% (Anchico-Jojoa et
al., 2023).

Figure 2.4 Variability in inflorescence shape and color of different quinoa
accessions grown in the experimental fields of Crop Research Institute in
Prague, Czech Republic

The fruit of quinoa is categorized as an indehiscent achene, comprising a
pericarp, thin endosperm followed by the embryo with two cotyledons radicula
and perisperm — the storage tissue. The diameter of the fruit can range from
1.80 to 2.66 mm (Gomez-Pando & Eguiluz de la Barra, 2011; Rojas, 2003)
exhibiting variable shapes, as represented in Figure 2.5.
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Figure 2.5 Median longitudinal section of quinoa achene (Prego et al., 1998)
and achene shape variability (Schmidt et al., 2021)

C: Cotyledons; EN: Endosperm; F: Funicle; H: Hypocotyl radicle; P:
Perisperm; PE: Pericarp; R: Radicle; SA: Shoot apex; SC: Seed coat

1: lenticular; 2: cylindrical; 3: ellipsoid and 4: conical shape

The coloration of the achene can vary across several shades, including black,
pink, red, yellow, cream, or brown (Biodiversity International et al., 2013).
Seeds exhibit rapid germination, occurring within hours after hydration,
facilitated by the attachment of endosperm cells to the embryo, which are
quickly consumed during growth (Vega-Galvez et al., 2010).

2.4.  Global production of quinoa

At present, quinoa is grown throughout North and South America, Europe,
Asia, Africa, and Oceania (Hinojosa et al., 2021). Alongside South American
countries, China, India, and some European countries cultivate quinoa (Bazile
and Baudron, 2015; Mosyakin and Schwartau, 2015; Yang et al., 2019).
However, the biggest world producers remain countries of the traditional region
of quinoa cultivation: Peru, with the production of 100,115 t; Bolivia, with
70,170 t (Faostat, 2022); and Ecuador, with more than 4,500 t (Hinojosa et al.,
2021), while the United States is the top importer (Bvenura and Kambizi,
2022). The global harvested area of quinoa almost doubled last decade from
95,979 ha in 2010 to 188,878 ha in 2020. Annual production in China was
20,000 t in 2018 and the harvested area reached nearly 12,000 ha (Yang et al.,
2019). Globally, the average yield slightly increased from 0.83 t/ha in 2010 to
0.93 t/ha in 2020 (Faostat, 2022).

In the last decade, quinoa has evolved from being a neglected traditional food
to an important export crop, promoted as a “superfood” throughout the Western
world (Bazile and Baudron, 2015; Nufiez De Arco, 2015). Rising demand
among Western consumers has created new economic opportunities for quinoa

12



farmers in Bolivia’s southern Altiplano. The negative aspect of the high interest
in quinoa and the extreme increase in demand for quinoa seeds is that it has
caused a spectacular increase in market price (Tschopp et al., 2018). However,
this quinoa boom has brought environmental disaster in the traditional regions
of quinoa cultivation in Bolivia (Jacobsen, 2011).

Similarly, in Peru, the area under quinoa cultivation has been expanded by
264% and its cultivation has spread to all regions of Peru (Bedoya-Perales et
al., 2018) which had a strong negative impact on the environment — soil
degradation, pests, and diseases occurrence; likewise on socio-economic links
and relations in local communities (Jacobsen, 2011). In the context of the
above-mentioned facts, countries of the Andean region have tried to make a
great effort to establish a harmonious interaction between socio-economic and
environmental demands (Bedoya-Perales et al., 2018) and apply strategies for
saving quinoa diversity, established breeding and research priorities, built more
transparent commercial chain policy, and ensure more efficient cooperation
with local farmers and cooperatives to decrease the negative impact of quinoa
growth expansion (Ruiz et al., 2014; Bazile and Baudron, 2015; Bazile et al.,
2016b; Bedoya-Perales et al., 2018; Hinojosa et al., 2021).

2.5.  Conservation of global quinoa genetic resources and history
of research on quinoa in the Czech Republic

Quinoa plant genetic resources are essential for food and nutrition security and
sovereignty of peoples, and they make a significant contribution to meeting the
basic needs of humanity. They are part of ancestral and cultural heritage,
especially for the countries of the Andean region. Their conservation and
sustainable use are therefore the responsibility of society as a whole (Rojas et
al., 2015). Quinoa is one of the underutilized crops with public breeding or
evaluation programs in South American countries such as Peru, Ecuador, and
Bolivia (Galluzzi and Noriega, 2014).

Quinoa seeds of different accessions are currently conserved in several gene
banks around the world (ex-situ conservation). However, the conservation of
agrobiodiversity means the conservation of the culture associated with
indigenous farmers living in the Andean region (Bazile et al., 2016a; Jacobsen,
2017). Thus, although the importance of gene banks for biodiversity
conservation is well known, the success of future conservation and breeding
programs depends on the transfer of knowledge and associated practices that
can help to adapt quinoa to new regions (Ruiz et al., 2014).
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Quinoa germplasm and its wild relatives are estimated at 16,422 accessions
worldwide and they are held in 59 institutions (universities, gene banks,
research, and agricultural institutions) in 30 countries around the world. A total
of 88% of accessions are conserved within the Andean region. The largest
collections of quinoa and its wild relatives are held by institutions in Bolivia
and Peru, with more than 6,000 accessions (Rojas et al., 2015). Compared to
outdated information about quinoa accessions conserved in gene banks
published by Jacobsen and Mujica in 2002, the collection, characterization, and
evaluation of quinoa genetic resources have greatly improved in recent years.

According to available data, the genetic resources of quinoa conserved in
collections outside the Andean region comprise a total of 2,137 accessions
(Table 2.1). In the database, the biological status of 1,329 accessions is
indicated as traditional cultivar/landrace, 552 accessions are listed as wild,
1,007 accessions are shown as advanced/improved cultivar, and 100 accessions
as others (Genesys, 2022).

The provenance of accessions is mostly Peru, followed by the USA and Bolivia.
In 1,329 accessions, the type of germplasm storage is not identified, 543 genetic
resources are kept in long-term seed collection, 193 are conserved in seed
collection, and 45 accessions are in the short-term collection. In total, 478
accessions have safety duplication in the Svalbard Global Seed Vault in
Norway and 143 accessions in the National Seed Storage Laboratory, USDA-
ARS in the USA. Most of the accessions (1,306) are conserved in the
International Center for Biosaline Agriculture in the United Arab Emirates. In
Europe, the largest collection (528 accessions) is held by the Genebank of
Leibniz Institute of Plant Genetics and Crop Plant Research in Germany
(Eurisco, 2022).

In the Czech Republic, research on quinoa genetic resources began in 1999 with
Dr. Anna Michalovéa, who obtained 22 quinoa genotypes from South America.
Subsequently, a working collection of quinoa genotypes was established in the
gene bank of the Crop Research Institute in Prague. The quinoa accessions were
evaluated under field conditions for selected agro-morphological traits (days to
flowering, days to harvest, 1,000-seed weight, etc.), and selected nutritional
components in the seeds (crude protein content) were also analyzed in the
laboratory.

Evaluation of the quinoa working collection was then stopped until 2016 when
Dr. Dagmar Janovska and Dr. Petra Hlasna Cepkova resumed work on quinoa
genetic resources cultivated under the conditions of the Czech Republic.
Currently, the working collection of quinoa includes 70 genotypes. They are
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being tested under field conditions using descriptors for quinoa and its wild
relatives (Biodiversity International et al., 2013) while analyses are being
conducted in the laboratory to determine the nutritional quality of the seeds of
each genotype. The promising material will be used for future breeding
purposes.

Table 2.1 Quinoa genetic resources in collections outside the South American
region (Genesys, 2022)

Institute No. of

Country Holding Institute -
code accessions
United Arab International Center for Biosaline Agriculture ARE003 1,306
Emirates
Germany Genebank, Leibniz Institute of Plant Geneticsand DEU146 528
Crop Plant Research
United States  North Central Regional Plant Introduction Station, USA020 162
USDA-ARS, NCRPIS
United Genetic Resources Unit, Institute of Biological, GBRO016 23
Kingdom Environmental & Rural Sciences, Aberystwyth
University
Hungary Centre for Plant Diversity HUNO03 19
Slovakia NAFC-Research Institute of Plant Production SVKO001 14
Australia Australian Grains Genebank, Agriculture Victoria AUS165 13
Ethiopia International Livestock Research Institute ETHO013 11
Slovenia Crops and Seed Production Department, SVNO019 5
Agricultural Institute of Slovenia
Australia Australian Pastures Genebank AUS167 4
Others 20
Total 2,105

2.6. Quinoa’s adaptability to a diverse environment

In different countries around the world, farmers and researchers have been
trying to find, test, and introduce nutritionally valuable seed crops that would
be suitable for diverse growing conditions, achieve satisfactory yields, and offer
versatile applications in food production and consumption (Gardner et al.,
2019; Toderich et al., 2020; Habiyaremye et al., 2022).To fully exploit the
potential of the crop for marginal environments, the identification of new and
high-yielding quinoa genotypes with good local adaptation and high nutritional
quality is crucial, which requires intensified screening and adaptation research
(Choukr-Allah et al., 2016). Recently, the performance of different quinoa
genotypes in different global environments with an emphasis on their
adaptability and seed nutritional quality has been studied in several countries
and regions (Table 2.2).
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The considerable variability in yield for different quinoa genotypes in the
different environments was confirmed outside of the Andean region. The lower
yields were observed at 0.08 t/ha in Morocco (Taaime et al., 2022) and the
highest at 7.83 t/ha (Thiam et al., 2021), also in Morocco. The range of yield in
experimental fields of the Czech Republic in 2018-2021 was estimated
between 0.12 and 3.99 t/ha (unpublished data). Observed yield levels in
Northern Europe were between 1-3 t/ha (Pulvento et al., 2012; Jacobsen, 2017;
Prager et al., 2018; De Bock et al., 2021b; Granado-Rodriguez et al., 2021b;
Matias et al., 2021).

As suggested previously, a range of factors may affect production, including
the choice of cultivars, optimal sowing date, and nutrient availability (Choukr-
Allah et al., 2016). Grain yield is further influenced by the cultivation
conditions, therefore there is a need to evaluate the varietal grain yield stability
across contrasting environments and even different growing seasons (Thiam et
al., 2021). In testing of 20 quinoa genotypes in two different environments in
Rwanda, it was observed that low water availability affected the growth and
yield of quinoa (Habiyaremye et al., 2022). In contrast, the local landrace
Cahuil cultivated in Chile had the best seed yield under water stress (Pinto et
al., 2021). Similar results were reported by Pathan et al. (2023) for 10
accessions grown under different environments and locations in the USA.

Choukr-Allah et al., (2016) reported that the salinity may promote the growth
of quinoa but up to a certain threshold, beyond which growth and productivity
start to be negatively affected. For example, the genotype ‘Titicaca’
(originating from the Andes) showed a good adaptation to the Mediterranean
environment with tolerance to salinity and drought (Pulvento et al., 2012). On
the other hand, high salinity can reduce the yield significantly and further
change the nutritional composition of seeds (Hussain et al., 2020).

Rising temperatures are challenging for quinoa as well as for other crops. High
temperatures during flowering and heat stress during the vegetative stage in
certain quinoa varieties considerably lowered yield (Matias et al., 2021). In the
growing conditions of Chile, the influence of increased night temperature on
quinoa plants was evaluated (Lesjak and Calderini, 2017). Grain yields were
reduced in the range of 12—-31% by increased night temperatures. Similarly, the
aboveground biomass was affected negatively.

As concluded by Taaime et al. (2022), optimal conditions contributing to better
growth and the highest yield in quinoa include a temperature range between
10-25°C, high and well-distributed precipitation, and short photoperiods. The
susceptibility of quinoa to high temperatures (above 32°C) was reported due to
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the flower closing during the day and limited pollination caused a reduction of
the yield by up to 86% (Tovar et al., 2020). In some regions of southeast China,
the combination of high temperatures and heavy rainfalls had negative effects
on the growth of quinoa. Fortunately, quinoa germplasm collected from Taiwan
showed resistance to high temperatures and heavy rainfalls (Yang et al., 2019).

Nonetheless, the establishment of quinoa in many agronomical areas outside
South America is still, unfortunately, relatively limited. It could be considered
that the quinoa cultivar selection process remains unfinished for new cultivation
areas, including those located in southern Europe which are characterized by
having intense precipitations at early growth stages and high temperatures at
later stages of crop development (Granado-Rodriguez et al., 2021b). There is
still very limited information regarding the stability of seed nutritional
characteristics under changing environments (Granado-Rodriguez et al.,
2021b).

As with any other new crop, one of the key factors for the successful
introduction and establishment of quinoa under new climatic conditions will be
the identification of appropriate planting material. Therefore, it is important to
study the adaptation and yield of several potential quinoa genotypes from
different provenances to select the most promising ones suitable for the local
agro-climatic conditions (Choukr-Allah et al., 2016). Not only should
adaptation of quinoa be discussed, but also sustainable establishment in a new
environment.

2.7.  Nutritional characteristics of quinoa seeds

Quinoa has outstanding nutritional value in all its edible parts — seeds and
leaves, which were recognized even by ancient populations that considered
quinoa a sacred food (Jacobsen et al., 2003). Quinoa seeds are a superior source
of vitamins, minerals, dietary fiber, and lipids with the presence of health-
beneficial polyunsaturated fatty acids (Repo-Carrasco et al., 2003). As reported
by Schlick and Bubenheim (1996), quinoa is one of the single food sources that
can supply all essential macro and micronutrients needed for balanced human
nutrition.

2.7.1. Carbohydrates, starch, and total dietary fiber

Quinoa seeds contain a relatively variable amount of carbohydrates in their
seeds. The lowest content was reported in the variety "Roja’, reaching 41.52%
in fresh weight (Gomez et al., 2021). Additionally, the lowest carbohydrate
content expressed in dry weight was reported by Ferreira et al. (2015), reaching
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43.64%. Conversely, the highest value (82.89% in DW) was found in
accessions cultivated in Peru (Encina-Zelada et al., 2017). As summarized in
Table 2.3, there are significant differences in carbohydrate content in various
genotypes. For example, Miranda et al. (2012) detected higher carbohydrate
content in Chilean highland ecotypes as opposed to southern ecotypes. Pereira
et al. (2019) reported higher mean carbohydrate content in black and white
varieties but lower in red varieties. In spite of that, many other variables modify
total carbohydrate content, such as environmental conditions and sowing date.
For example, in sea level genotypes and one cross genotype cultivated in
Argentina, winter sowing at 18°C resulted in expanded seed weight, and
therefore higher carbohydrate content in seeds (Curti et al., 2018).

In terms of environmental influence, increased carbohydrate content was
reported for lowland/coastal quinoa genotypes 'Regalona Baer” and "Villarrica’
in arid conditions with lower soil organic matter content and a mean
temperature of approximately 18°C during the growing season (Miranda et al.,
2013). Experiments conducted with genotypes cultivated in Spain resulted in
decreased carbohydrate content in a growing season with a mean temperature
of approximately 25°C, in contrast to a growing season with a mean
temperature lowered by 5°C (Matias et al., 2021). This was also supported by
Garcia-Parra et al. (2022), indicating the highest carbohydrate content (65.5%)
in cultivars grown in a cold climate. There were also significant differences in
carbohydrate content reported in irrigated and drought conditions (Pathan et al.
2023). While high carbohydrate content could be beneficial for some food
applications, it negatively affects the total protein content in quinoa seeds
(Craine and Murphy, 2020; De Bock et al., 20214, b).

The most prevailing fraction of quinoa carbohydrates is starch, situated
primarily in the perisperm, in contrast to the cereals (Burrieza et al., 2014). The
minimal value for starch content was 44%, found in genotype "Cica’” cultivated
in Argentina (Jimenez et al., 2019), whereas the most abundant starch content
of 72.5% was described by De Bock et al, (2021b) in genotype "Titicaca” grown
under North-West European field conditions. Nonetheless, the values for starch
content varied between different years of field experiments in the mentioned
study. Similarly, Grimberg et al. (2022) characterized the genotype "Titicaca’
as one with the most prominent starch content. Aluwi et al. (2017) evaluated
the maximal starch content in genotype "CO 407D’ (64% in DW) and the lowest
for 'UDEC-1" (55%), both cultivated in the USA.
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Quinoa starch is rich in polysaccharide amylopectin, which represents 54—-85%
of DW (Dong et al., 2021; Kheto et al., 2022). Amylose content is, on the other
hand, relatively low. It ranges from approximately 6% in ‘Tianjing Tibet
Quinoa’ (Li and Zhu, 2017) up to 20% in the Argentinian variety "Jujuy’
(Nascimento et al., 2014). Specific starch and amylopectin structures give
quinoa starch various functional properties that can be used in a wide range of
food products (Li et al., 2016; Aluwi et al., 2017; Li and Zhu, 2017).
Nevertheless, climatic conditions during the growing season may alter final
functionality, even though starch biosynthesis is determined primarily by
genetics (Garcia-Parra et al., 2021, 2022). Additionally, seed color seems to
correlate with starch physiochemical properties, as reported by Peng et al.
(2022), in opposition to Li et al. (2016), describing no correlation between the
seed color and starch characteristics.

Total dietary fiber (TDF) content in quinoa is also highly heterogeneous,
ranging from approximately 7% (De Bock et al., 2021a) up to 23% (Granado-
Rodriguez et al., 2021b). The variation can be explained by the genotype effect
(Curti et al., 2018), but also by growing conditions since fiber content can be
enhanced under saline conditions (Pulvento et al., 2012) and high temperatures
during the grain filling period (Matias et al., 2021). Negative correlations were
found between TDF, carbohydrate, and fat content (Vidueiros et al., 2015).
Overall, high amounts of TDF (over 18% TDF) were found in genotypes
‘Rainbow’, "Faro’, ‘Baer’, and "Colorado 407D cultivated in Poland (Sobota
et al., 2020), "Titicaca” grown in Italy (Pulvento et al., 2012), and 'Roja” and
‘Duquesa’ grown in Spain (Matias et al., 2021). Less prominent amounts
(below 14% TDF) were presented in "Faro Red’, "Puno” (Sobota et al., 2020),
"Pasto’, (Matias et al., 2021), white Bolivian and Peruvian quinoas (Pellegrini
et al., 2018), and genotypes ‘Cica’, "Kamiri’, and “Inga Pirca” (Jimenez et al.,
2019).

Although the TDF values in quinoa may be comparable to that of cereal grains,
the fiber composition of quinoa resembles that of leguminous seeds, fruits, or
vegetables rather than typical cereals. As described by Lamothe et al. (2015),
insoluble fiber comprises 78% of TDF and approximately 22% of TDF
constitutes soluble fiber. TDF in quinoa is composed of pectic polysaccharides
and xyloglucans in varying amounts and structures depending on the fiber
fraction. The insoluble fraction of dietary fiber encompass homogalacturonans
interspersed with rhamnogalacturonan-I stretches, branched xyloglucans, and
cellulose, whereas the soluble fraction constitutes homogalacturonans and
arabinans, with xylose present in smaller proportions. The composition of
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quinoa TDF is primarily formed by galactose, arabinose, and galacturonic acid
(Lamothe et al. 2015; Liu et al. 2020b). On the other hand, Pedrali et al. (2023)
reported uronic acid, glucose and arabinose as three main components in quinoa
TDF, however, their specific content significantly varied among different
quinoa cultivars.

Despite extensive research on quinoa’s nutritional profile, the specific
composition of its sugars is often underexplored, with most sources
documenting only general, common sugars (Pereira et al., 2019; Tan et al.,
2021; Gomez et al., 2021). However, recent work by Song and Peng (2024)
identified 33 distinct sugars across three quinoa varieties, with 25 reported for
the first time. Notable sugars such as D-talose, levoglucosan, 6-deoxy-D-
glucose, and gentiobiose showed significant variation among the cultivars.

2.7.2. Protein content and amino acid composition

Quinoa is primarily prized for its protein, with the content ranging between
7.47% in DW and 20.80% in DW (Graf et al. 2016; Gargiulo et al., 2019). The
protein in quinoa seed is predominantly localized within the embryo in the
amount of approximately 23.5%. Hence, a high correlation was detected
between embryo weight ratio and protein content (Gargiulo et al., 2019).
Additionally, a lesser proportion of protein is presented in the perisperm,
estimated at 7.2% (Ando et al., 2002).

Variations in protein content were significant in several genotypes cultivated in
distinctive agroecological conditions. For example, the cultivar "Jessie’
originating in France was cultivated in Belgium and reached almost 19%
protein content (De Bock et al., 2021b), whereas the same genotype cultivated
in Germany reached a protein content of approximately 12% (Prager et al.,
2018). Nevertheless, "Jessie’ cultivated for two years in southwest Spain
showed a steady mean protein content of 16.7% (Matias et al., 2021).
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The Danish-bred cultivar "Titicaca” was analyzed in at least 10 studies under
distinctive environmental conditions. Despite that, this genotype reached
analogous values (13-15%) in the cultivation conditions of Ethiopia (Agza et
al., 2018), Morocco (Mhada et al., 2020), Belgium (De Bock et al., 2021b),
USA (Aluwi et al., 2017), and Germany (Prager et al., 2018). Besides, slightly
higher protein content (above 15%) was observed under cultivation in Poland
(Sobota et al., 2020) and Colombia (Garcia-Parra et al., 2022). In addition,
Reguera et al. (2018) reported higher protein content for "Titicaca” cultivated
in Chile compared to Spain, which follows the results of Granado-Rodriguez et
al. (2021a), reaching comparable values in mean protein content averaged for
three cultivation years.

Genotype "'Regalona’, originating in southern regions of Chile, was described
in at least eight studies. The values of protein content were quite inconsistent.
Miranda et al. (2012), Graf et al. (2016), and Granado-Rodriguez et al. (2021a)
detected protein content reaching approximately 13-15% for 'Regalona’
cultivated in Chile and Spain, whereas other authors achieved higher values of
approximately 17% under field experiments in Chile and Egypt (Lesjak and
Calderini, 2017; Reguera et al., 2018; Saad-Allah and Youssef, 2018). Even
higher values were achieved by Gargiulo et al. (2019) (18.3%); however, the
authors did not specify the cultivation location.

The protein content of the Danish cultivar "Puno” was described in at least seven
studies. The majority of the results were quite consistent in diverse
environments (USA, Germany, Poland, Belgium, Colombia), ranging between
13 and 15% (Aluwi et al., 2017; Sobota et al., 2020; De Bock et al., 2021b;
Garcia-Parra et al., 2022). On the other hand, (Garcia-Parra et al., 2021)
evaluated reduced protein content, reaching almost 12% in "Puno’ cultivated in
Colombia. Although the Peruvian genotype "Pasankalla” was tested in at least
4 studies, the referred values of protein content are quite distant. Apaza et al.
(2015) and Gargiulo et al. (2019) discovered protein content of 18.73-20.60%,
while Garcia-Parra et al. (2021) and Garcia-Parra et al. (2022) achieved lower
values (14.5-15.5%, respectively) during experiments conducted in Colombia.

There are many factors affecting the resulting protein content. Besides the
influence of genotype, the importance of soil matric potential (SMP) and
nitrogen fertilization was indicated (Wang et al., 2020). High SMP values (over
—55 kPa) cause significant water stress and may also limit nitrogen uptake,
which concurs with other studies (Sun et al., 2014; Walters et al., 2016).

Therefore, to reach optimal protein content, irrigation is crucial for some
genotypes cultivated in adverse soil-water conditions (Pathan et al. 2023),
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although slight water stress may enhance protein content (Wang et al., 2020).
The intense application of nitrogen from 80 to 240 kg/ha increased protein
content by approximately 1.5%. The positive effect of nitrogen fertilization was
also presented by Wu et al. (2016) and Jacobsen and Christiansen (2016).

In addition, protein content in quinoa rises under salinity treatment, which was
reported for varieties ‘CO407D’, "UDEC-1’, 'Baer’, ‘QQ065" (Wu et al.,
2016), and "‘NSL106398" (Hussain et al., 2020). In contrast, Ruiz et al. (2016)
expressed a drop in protein content by 7-12% in coastal lowland Chilean
landraces ("VI-1", "Villarrica") and genotype 'R49” (Salares ecotype). In terms
of temperature influence, protein content under heat stress was outstanding in
varieties "Pasto’, "Marisma’, "Jessie’, ‘Roja’, and '‘Duquesa’ (Matias et al.,
2021). Garcia-Parra et al. (2022) detected higher mean protein values for
cultivation in the cold climate of Colombia, compared to temperate and warm
conditions; but, as reported by the authors, protein content was not rapidly
affected by elevated temperatures. The exception in this paper was the cultivar
"Pasankalla’, showing a decline in protein content in hotter conditions.

Probably even more important than overall protein content is the quality of
protein, given by the composition of essential amino acids (EAA). Quinoa
protein generally contains all EAAs and several authors throughout the
literature have concluded that quinoa protein is complete due to the superior
composition of amino acids (AA) (Nowak et al., 2016; Maradini et al., 2017;
Schmidt et al., 2021).

Nonetheless, Craine and Murphy (2020) argued that many of those studies
evaluated outdated daily requirements or considered AA requirement values
only for adults, not for children, whose requirements for EAAS are greater, as
estimated by WHO/FAO/UNU (2007). The authors further stated that the
quinoa protein is only “nearly complete”. Regarding this statement, Boye et al.
(2012) labeled valine and lysine as limiting AA for children up to the age of 10
years. In comparison, Gonzalez et al. (2012) suggested lysine, tyrosine, and
tryptophan as limiting AA for the age group of 2-5 years. Craine and Murphy
(2020) identified low leucine content, which does not achieve the
recommended daily requirements for infants and children, therefore
considering it as limiting AA. Recently, Craine et al., (2023) reported that
48.6% of studied genotypes (n = 360) met adult requirements, but only two
samples ("Moroccan Yellow” and "Ames-13733") met all EAA requirements
for all age groups.

With regards to the previously mentioned limiting AAs, several genotypes
accomplished the daily requirements for EAAs in infants and children.
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Sufficient lysine content (over 5.7 g/100 g protein) was identified in genotypes
"Jessie’, "Pasto’, and 'CICA" (Table 2.5). Valine content (over 4.3 g/100 ¢
protein) was satisfactory in genotypes "Ancovito’, "CICA’, "Jessie’, ‘Rouge
Marie’, "Zwarte’, and 'Roja’. Suitable leucine content (over 6.6 g/100 g
protein) was found in genotypes "Villarrica’, ‘Rataqui’, "Atlas’, and "Jessie’.
Tryptophan content (over 0.85 g/100 g protein) was met in genotypes "Sajama’,
'B080", 'Regalona’, "Zeno’, "Puno’, and in all genotypes analyzed by De Bock
etal. (2021b) (Table 2.5).
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Overall, the remarkable variations in EAA composition might be caused by
genotype, environment, and their interactions. According to De Bock et al.
(2021b), the content of EAAs varied between growing seasons, but not between
genotypes, in contrast to Prager et al. (2018), who noticed significant
differences among genotypes and experimental years. Pathan et al. (2023)
reported that there was no significant difference in all EAA except methionine
and tryptophan, between the irrigated and drought environments.

In terms of cultivation area, Steffolani et al. (2016) pointed out that Bolivian
varieties had higher EAA content than Peruvian varieties. Gonzalez et al.
(2012) indicated dissimilarities in EAA content between two experimental sites
with higher EAA content in the Bolivia/Argentina location, which authors then
explain by adaptation of the genotypes to the conditions they were bred in.
Reguera et al. (2018) noted that varieties grown in Chile did not exhibit inter-
cultivar variations in AA content compared to the same varieties grown in
Spain, except for cultivar ‘Titicaca” which had consistent AA content among
varieties and locations.

Most of the EAAS were not negatively affected by salinity in "Q5’, a new salt-
and drought-tolerant line, except for tyrosine (Toderich et al., 2020). Aloisi et
al. (2016) found variations in genotype response to saline conditions. EAAs
remained constant or declined, except for increased methionine in genotype
‘R49’, belonging to the group of Salares ecotype; and leucine in genotype
"Villarrica” (coastal-lowland ecotype). A strong decline in EAASs under salinity
treatment was detected in genotype VI-1 (coastal-lowland ecotypes).

An indispensable aspect of assessing protein is the digestibility of individual
amino acids (FAO et al., 2013a). Nonetheless, the information about this
parameter in quinoa is sparse and/or outdated in available scientific literature.
Further, the available data are inherently non-comparable due to distinct
methodological frameworks.

Shi et al. (2020) reported lower digestibility (measured by the in-vitro protein
digestibility-corrected amino acid score — IV-PDCAAS) in cultivar 'NQ94PT’,
compared to the commercial blend of cultivars "Kankolla” and "Blanca Juli’.
Further, Jimenez et al. (2019) reported quinoa in-vitro protein digestibility
(using the AOAC 971.09 method) between ~61-63% in varieties "Cica’,
"Kamiri’, and “Inga Pirca” obtained from Argentina. In addition, Craine and
Murphy (2020) evaluated the protein digestibility corrected amino acid scores
(PDCAAS) in varieties "Colorado D407’ ranging from 0.74 to 0.90 and 0.78 to
0.95 for the 1-2 and 10-year-old children, respectively. To the authors’
knowledge, there is no study applying the digestible indispensable amino acid
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score (DIAAS), which is a recommended method for the measurement of
protein digestibility by FAO et al. (2013a).

Since quinoa is not edible raw, it is essential to measure protein digestibility in
processed samples rather than raw seeds. Previous studies have demonstrated
that various heat processing methods (Rizzello et al., 2016; Lorusso et al., 2017,
Dong et al., 2021; He et al., 2022) and germination (Jimenez et al., 2019) may
improve the overall protein digestibility. On the other hand, digestibility is
reduced by the presence of starch, fiber (Opazo-Navarrete et al., 2019), and
various antinutritional compounds (Gilani et al., 2012).

2.7.3. Lipid content and composition

Lipid content in seeds is, among other factors, strongly affected by genotype
(Curti et al., 2020; Garcia-Parra et al., 2022). Since the primary lipid storage is
located in the embryo, embryo size may also correlate to overall seed lipid
content (De Bock et al., 2021b). The highest lipid yield was described in the
genotype "Yellow Marangi’, cultivated in Peru, reaching almost 10% (Apaza et
al., 2015), whereas the lowest lipid content reached nearly 3% in the quinoa
variety "QU5’, cultivated in Belgium (De Bock et al., 2021a) and commercial
variety ‘Gramolino” from Ecuador (Graf et al., 2016) (Table 2.6). In addition,
colored seed samples tend to exhibit higher lipid content than white seed
samples (Pellegrini et al., 2018); yet Tang et al. (2015a) and Shen et al. (2022)
obtained the opposite findings. Overall oil content was negatively correlated to
protein content (Matias et al., 2021).

In terms of oil production, quinoa performed well in temperate climates since
heat stress reduced average oil content by almost 30% (Garcia-Parra et al.,
2022). Curti et al. (2018) found strong interactions between cultivar and sowing
date, related to the various photo-thermal conditions during sowing. In a two-
year experiment with cultivars ‘Titicaca” and ‘Jessie’, stable results were
achieved with a mean crude fat content of 7.5 and 7.3%, respectively (Prager et
al., 2018). Unfortunately, there are only a small number of studies on quinoa
oil production concerning meteorological conditions during the growing season
and the adaptive response of the genotype. Nonetheless, the study of Pathan et
al. (2023) indicates no statistical differences in crude fat content between
irrigation and drought conditions.
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Quinoa lipid profile is composed predominantly of essential polyunsaturated
-6 linoleic acid (C18:2). The minimum content of C18:2 reached 43% in
accession "CHEN414’ originating in dry valleys of North Argentina (Vidueiros
etal., 2015), whereas the maximum content was measured in variety "Temuko’
cultivated in the USA, reaching 63% (Chen et al., 2019). Quinoa oil also
contains a relatively high volume of monounsaturated oleic acid (C18:1),
reaching minimum values of 16% in the commercial variety "Quinta Quinoa-
BC12’ (Tang et al., 2016a) and maximum values of 33% in accession "CHEN
465" originating in the transition zone of Northwest Argentina (Vidueiros et al.,
2015). Saturated palmitic acid (C16:0) was presented in 3.4-13% in genotype
"QUF9P39-73" (Chen et al., 2019) and white quinoa genotypes (Tang et al.,
2016a; Shen et al., 2022), respectively. A negative correlation was found
between palmitic acid (C16:0) and oleic acid (C18:1), as reported by Chen et
al. (2019).

Less abundant fatty acid in quinoa lipid profile is an essential o-3 a-linolenic
acid (C18:3), which reached 4-8% (Tang et al., 2016a; De Bock et al., 2021a,b;
Shen et al., 2022); yet Vera et al. (2019) found values reaching up to 11% in
yellow quinoa cultivar. Vidueiros et al. (2015) determined the range for a-
linolenic acid as 3.2-9.4% for accessions 'CHEN 465" and 'CHEN 60’,
respectively. Quinoa oil also has several minor fatty acids, such as myristic acid
(C14:0), stearic acid (C18:0), behenic acid (C22:0), gadoleic acid (C20:1),
arachidonic acid (C20:4), and erucic acid (C22:1); however, those are presented
only in negligible amounts (below 2%) (Tang et al., 2015a; De Bock et al.,
2021b; Shen et al., 2022).

Several authors noticed variations in fatty acid profiles between varieties (Tang
et al., 2016a; De Bock et al., 2021b; Shen et al., 2022), but Prager et al. (2018)
did not report any significant alterations between varieties or years. Toderich et
al. (2020) indicated changes in fatty acid composition in genotype "Q5" grown
in saline soils. While the majority of fatty acids declined in medium salinity,
the content of palmitoleic acid (C16:1) and arachidic acid (C20:0) was slightly
raised. Besides that, the high mixed salinity of sodium chloride and sodium
sulfate resulted in a significant increment of stearic acid (C:18:0). The authors
also concluded that sulfate salinity affects the fatty acid composition more than
the sodium chloride type of salinity.

Elevated temperature, together with cultivar-specific response, resulted in
lower content of some fatty acids, especially oleic acid (C18:1), stearic acid
(C18:0), gadoleic acid (C20:1), and behenic acid (C22:0) (Matias et al., 2021).
In contrast, the content of linoleic acid (C18:2) increased or remained
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unaffected in hot conditions in some cultivars (Curti et al., 2020; Matias et al.,
2021). In terms of major fatty acid content, genotype "Jessie” with the shortest
life cycle performed better in hot conditions compared to other genotypes. A
very important role in quinoa oil quality is also played by optimal fertilization
since correlations between some minerals and fatty acid content were observed
by Matias et al. (2021).

Based on the available scientific literature, genotypes with black seeds tend to
have higher polyunsaturated fatty acid (PUFA) content as opposed to genotypes
with red or white seeds (Tang et al., 2015a; Pellegrini et al., 2018; Pereira et
al., 2019; Shen et al., 2022). Moreover, the highest monounsaturated fatty acid
(MUFA) and saturated fatty acid (SFA) content were present in red genotypes
(Tang et al., 2015a; Pellegrini et al., 2018; Pereira et al., 2019; Vera et al.,
2019), in contrast to Shen et al. (2022) who obtained opposed outcomes (Table
2.7).

The overall nutritional quality of oils is characterized by the m-6/ »-3 ratio, with
an ideal composition of 1-4/1 in the human diet, as recommended by
Simopoulos (2002). Nevertheless, the @-6/ -3 ratio of quinoa did not meet the
required values since it ranged from 4.7% in the variety "Amarilla de
Marangani” up to nearly 20% in the variety "Negra Collana” produced in Peru
(Veraetal., 2019) (Table 2.7). Despite that, the fatty acid proportion and related
nutritional quality are better than in amaranth with values reaching 33-69%
(Tang et al., 2016a; Paucar-Menacho et al., 2018).
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2.7.4. Secondary metabolites and their biological effects

Quinoa exhibits a diverse array of secondary metabolites, categorized into five
principal groups: phenolic acids, flavonoids, terpenoids, steroids, and nitrogen-
containing metabolites (Lin et al., 2019). Nonetheless, the predominant
compounds detected in quinoa belong to the group of phenolic acids and
flavonoids (Tang & Tsao, 2017).

Phenolic acids represent a class of organic compounds distinguished by their
characteristic benzene ring structure, which includes a carboxylic group and
one or more hydroxyl and/or methoxy! groups. This class is further subdivided
into two subgroups: hydroxybenzoic acids and hydroxycinnamic acids (Al
Mamari, 2021). In quinoa, the most abundant representatives of the
hydroxybenzoic group are benzoic acid, gallic acid, protocatechuic acid,
vanillic acid, and syringic acid (Gawlik-Dziki et al., 2013; Tang et al., 2016b).

On the other hand, the hydroxycinnamic acid subgroup includes representatives
such as caffeic acid, chlorogenic acid, coumaric acid, ferulic acid, cinnamic
acid, and sinapic acid in quinoa (Gawlik-Dziki et al., 2013; Pasko et al., 2008;
Tang et al., 2016b). Metabolites from both groups were primarily detected in
quinoa leaves and seeds, however, some were also isolated from quinoa sprouts
(Lin et al., 2019) and they both exhibit diverse biological activities, including
antimicrobial, antiviral, hepatoprotective, anti-inflammatory, anticancer,
antioxidative, and anti-inflammatory effects (EI-Hawary et al., 2016; Kiokias
& Oreopoulou, 2021; Liu et al., 2020a).

As for flavonoids, they constitute a class of compounds characterized by a
common structural motif consisting of two benzene rings linked by a pyrene
ring (Caleja et al., 2017). Flavonoids are further classified into flavones,
flavonols, flavanones, flavanols, and isoflavones based on variations in
hydroxyl group positions, alkylation, and glycosylation patterns (Panche et al.,
2016).

Flavones, including acacetin, isovitexin, orientin, and vitexin, have been
predominantly identified in quinoa seeds, with the exceptions of isovitexin and
vitexin, which were exclusively observed in sprouts (Pasko et al., 2008).
Overall, 21 flavonols have been identified in quinoa, mainly in glycoside form,
with representatives such as kaempferol, quercetin, rutin, and isorhamnetin
(Gawlik-Dziki et al., 2013; Tang et al., 2015b). Flavanols, predominantly found
in quinoa seeds, are represented by catechin, epicatechin, and epigallocatechin
(Tang et al., 2015b; Tang et al., 2016b). Flavanones, such as hesperidin,
neohesperidin, and naringin, are primarily located in quinoa seeds, with some
detected in quinoa sprouts as well (Pasko et al., 2008; Tang et al., 2015Db).
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Isoflavones, including biochanin A, daidzein, and genistein, have been
exclusively identified in quinoa seeds (Lutz et al., 2013; Tang et al., 2015b).

Flavonoids show strong antioxidative activity, especially the members of the
flavones group (Panche et al., 2016). Additionally, they exhibit diverse
biological activities, including anti-inflammatory, anti-cancer, anti-Alzheimer's
disease, antibacterial, antituberculosis, and neuroprotective effects (Al-Khayri
etal., 2022; Ayaz et al., 2019; Kopustinskiene et al., 2020; Rabaan et al., 2022;
Shamsudin et al., 2022).

The total polyphenol content (TPC), total flavonoid content (TFC), and related
antioxidant activity (AA) were evaluated in quinoa in several studies.
Nonetheless, the values reported across the scientific literature were often
extremely diverse and not very well comparable to each other due to the use of
different solvents and extraction methods (Acosta-Estrada et al. 2014).
Previous studies suggested a positive correlation between TPC, TFC, and AA
(Pellegrini et al., 2018; Granado-Rodriguez et al., 2021). On the other hand,
Antognoni et al., (2021) and Pedrali et al. (2023) argued that the total AA is
more related to the specific compositions of compounds with antioxidant
properties, rather than the total phenolic content. Similarly, Buitrago et al.
(2019) did not observe any correlation between TFC and AA. These
discrepancies could be, however, partially explained by distinct methodologies
applied in the mentioned studies.

Higher TPC was observed in colored quinoas compared to white or yellow
ones. Similarly, higher TFC and AA were evaluated in dark-colored and red
samples (Tang et al., 2015a, b; Pellegrini et al., 2018; Liu et al., 2020a). Even
the metabolite composition differs between white, red, and black genotypes.
For example, protocatechuic acid, p-coumaric acid, betanin, and isobetanin
(Tang et al., 2015b; Liu et al., 2020a) were exclusively found in colored quinoa.

The AA, TPC, and TFC of the sample were reported to be influenced by the
genetic makeup of the plant (Fischer et al., 2017; Granado-Rodriguez et al.
2021b), whereas the cultivation location seemed to be an insignificant factor
(Pedrali et al., 2023). This statement partially agrees with Reguera et al. (2018),
who reported no differences in AA between three different locations in cultivars
"Titicaca” and "Salcedo-INIA’, but significant differences were displayed in
‘Regalona’. As concluded by Antognoni et al. (2021), both 'Titicaca” and
‘Regalona” did not show any relevant genotype-dependent fluctuations in
studied parameters, probably because both were bred from the same gene pool.
Nonetheless, the agroecological conditions can, to some extent, change the
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biochemical content and composition, which agrees with the conclusions of
Granado-Rodriguez et al. 2021a).

Considering the environmental influence, limited water supply resulted in a
decrease of both TPC and TFC by 70% and 76%, respectively (Toubali et al.,
2022). On the other hand, Fischer et al. (2017) reported that the water restriction
increased the AA by 2-fold approximately, which could refer to the increased
need of the plant to minimize oxidative damage during drought stress. When
cultivated under salinity conditions, landrace "R49° displayed a strong increase
in TPC and AA, whereas landrace Villarica had the most abundant increase in
TFC under non-saline conditions (Aloisi et al., 2016).

2.7.5. Vitamin and minerals

Quinoa seeds generally contain minerals such as Ca, Fe, Mg, Na, P, K, and Zn
in a sufficient amount to meet a balanced human diet (Repo-Carrasco et al.,
2003; Granado-Rodriguez et al., 2021a, b). As indicated by several authors,
quinoa seeds have an even higher content of many minerals than common
cereals (Martin et al., 2014; Nascimento et al., 2014; Mhada et al., 2020;
Hussain et al., 2021). The content of minerals fluctuates due to genotype, soil
type, year, and fertilization (Miranda et al., 2013; Prado et al., 2014; Pellegrini
et al., 2018; Granado-Rodriguez et al., 2021a; Bock et al., 2022).

According to Granado-Rodriguez et al. (2021b), the contents of P, Ca, and Fe
remained consistent between varieties, unlike K, Mg, and Na. Matias et al.
(2021) also found significant fluctuations in K and Mg. Granado-Rodriguez et
al. (2021a) stated that Mg, Fe, and Zn content was not strongly influenced by
cultivar x year interactions. Reguera et al. (2018) observed changes only in Zn
between locations, while De Bock et al. (2021b) noted no variations in P and
Ca over the years but found differences among varieties. Additionally, dark-
colored varieties had higher P, which correlated with increased linoleic acid
(C18:2) and lower MUFAs (Matias et al., 2021). This may explain the higher
PUFA content in black-seeded varieties compared to red or white ones. Strong
correlations were also found between P and protein content (Granado-
Rodriguez et al., 2021b; Matias et al., 2022).

Significant contrasts in mineral concentration among cultivars were also
analyzed between hot and cool years, which were probably caused due to little-
understood heat-induced adaptation mechanisms and/or interactions among
nutrients (Matias et al., 2021). Genotypes 'Pasto’, "‘Dutchess’, "Atlas’, and
‘Summer Red” cultivated in Belgium had the highest amount of minerals, in
contrast to the other studied genotypes in the experiment of De Bock et al.
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(2021b). Further, genotypes "Marisma’ and ‘Jessie’ grown in Spain were
evaluated as genotypes with significantly high mineral content (Granado-
Rodriguez et al., 2021b, Matias et al., 2021).

In terms of adaptability to adverse conditions, Toderich et al. (2020) referred to
the genotype 'Q5" as suitable for saline environments since there was a
remarkable increment of Fe, Zn, and Ca content under salinity. Mineral
concentration varied under contrasting irrigation treatments, except for Mn
concentration, which was not significantly different (Walters et al., 2016). The
authors also estimated that heterogeneity in concentrations might occur due to
the dilution effect.

Although there is not enough current data on the overall vitamin content in
quinoa, it was concluded in previous studies that quinoa has a satisfactory
concentration of thiamine (B1), riboflavin (B2), niacin (B3), pyridoxine (B6),
folic acid, and vitamins A, C, and E (Koziol, 1992; Ruales and Nair, 1992).
Vitamin E is a general term for tocopherols (a-, B-, y-, and 8-) and tocotrienols
(a-, B-, v-, and 8-), also named vitamin E homologs. According to Fischer et al.
(2013), vitamin E content in quinoa seeds ranged between 1.04-1.28 mg/100
g, and overall content was not altered by escalated moisture deficit in genotypes
‘Regalona’, '‘B080", and "AG2010".

Tang et al. (2016) found significant variations in overall vitamin E content and
the composition of vitamin E homologs. The most abundant vitamin E homolog
in quinoa was g-tocopherol followed by a-tocopherol, and d-tocopherol, which
is following the results of Pereira et al. (2019) and Granda et al. (2018). No
tocotrienols were detected in any of the mentioned studies. Pereira et al. (2019)
also determined higher content of - and y-tocopherols in the black genotype,
but higher a-tocopherol content in the red genotype.

Miranda et al. (2013) uncovered significant alterations in vitamin B content
caused by distinct environmental conditions in two studied localities with the
highest concentration of B vitamins in the arid locality Vicufia in Chile. Granda
et al. (2018) also observed a diverse content of vitamin B. While the content of
B2 and B6 was relatively similar among varieties, diverse values were
determined for B1. The highest concentration of B1 was found in non-
pigmented varieties "Tunkahuan” and ‘Titicaca’. Increased content of B2
appeared in colored varieties and the highest content of B6 was identified in the
pigmented variety "Pasankalla’. The vitamin C content also changes between
distinctive locations with the highest content (49.30 mg/100 g DW) in genotype
"Villarrica” cultivated in the area of Temuco with a cold temperate climate
(Miranda et al., 2013).
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2.8.  Antinutritional factors

Despite its considerable nutritional attributes, quinoa also harbors various
antinutritional substances that might be capable of diminishing nutrient
absorption and thereby impacting the overall nutritional quality of quinoa-
based foods (Filho et al., 2017). Among these, saponins represent the primary
antinutritional factors. Other compounds, such as phytic acid, protease
inhibitors, tannins, and oxalates are found in quinoa in lesser quantities (Zhou
etal., 2023).

Saponins constitute a diverse family of chemical compounds characterized by
the presence of a steroid or triterpenoid aglycone (sapogenin) connected to one
or more oligosaccharide moieties, forming glycosides (Liener, 2003). Quinoa
is known to contain approximately 40 different saponins, primarily isolated
from flowers, seeds, and bran (El Hazzam et al., 2020), although some reports
indicate their presence in leaves, stems, and roots as well (Lim et al., 2020;
Stoleru et al., 2022a). Saponin content ranges from less than 0.1 mg/g to 7.9
mg/g in quinoa seeds and it is influenced by genotype and environmental
conditions (De Bock et al., 2021b; El Hazzam et al., 2020).

While saponins contribute a bitter taste and decrease the bioavailability of some
nutrients (Samtiya et al., 2020), they possess immense therapeutic potential
demonstrating anti-inflammatory, antidiabetic, hepatoprotective, and anti-
cancerous effects (Sharma et al., 2023). In plants, they serve as important plant
defense mechanisms associated with anti-microbial, anti-fungal, and
insecticidal effects (Zaynab et al., 2021).

Phytic acid, also known as inositol-6-phosphate or phytate, serves as the
primary storage form of phosphorus in plant tissues and controls the uptake and
homeostasis of zinc and inorganic phosphate (Belgaroui et al., 2022). While
phytic acid is an essential element of plant growth and development (Pramitha
et al., 2021), it is the undesired compound in the human diet since it forms
complexes with nutrient cations (calcium, iron, and zinc) thereby reducing their
absorption in the digestive tract (Lee et al., 2015; Silva et al., 2021). Despite its
antinutritional properties, phytic acid exhibits anti-carcinogenic, anti-
inflammatory, and anti-microbial activities (Hou et al., 2022; Masunaga et al.,
2019; Nassar et al., 2021).

Protease inhibitors, together with tannins and oxalates may become a health
risk factor for humans when consumed in elevated amounts (Kéarlund et al.,
2021; Salgado et al., 2023). Nonetheless, in quinoa, both compounds are
presented generally in trace amounts, therefore they do not possess any
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significant health concerns associated with their consumption (Saad-Allah &
Youssef, 2018; Sobota et al., 2020; Villacrés et al., 2022).

2.9.  Summary

This overview provides a summary focused on current research on different
quinoa genetic resources in diverse growing conditions. Quinoa is considered
a highly nutritive crop that is also resistant to drought and salt suitable for
marginal regions. According to our findings, the different environmental
conditions can have a strong impact on the nutritive compounds of quinoa
seeds. Further, the adaptation of quinoa to adverse conditions has limitations in
the case of elevated temperatures, high salinity levels, or a combination of
weather extremes — heavy rainfall followed by temperatures over 30°C —
together with cultivar response may negatively affect growth and productivity
which can result in changed content of nutritive compounds. However, an
insight into the enormous variability of nutritive components possessed by
quinoa germplasm cultivated in the different conditions of the world shows us
how important it is to conserve and protect this richness, and to select
outstanding accessions suitable to different conditions. It gives us the potential
and hope to develop new varieties of quinoa adapted to different environments
and production systems.

52



References

Agza, B., Bekele, R., and Shiferaw, L. (2018). Quinoa (Chenopodium quinoa,
wild): as a potential ingredient of injera in Ethiopia. J Cereal Sci. 82, 170-174.
doi: 10.1016/j.jcs.2018.06.009

Ahmadi, S. H., Solgi, S., and Sepaskhah, A. R. (2019). Quinoa: A super or
pseudo- super crop? Evidences from evapotranspiration, root growth, crop
coefficients, and water productivity in a hot and semi-arid area under three
planting densities. Agri. Water Manage. 225, 105784. doi:
10.1016/j.agwat.2019.105784

Al Mamari, H. H. (2021). Phenolic Compounds: Classification, Chemistry, and
Updated Techniques of Analysis and Synthesis. In F. A. Badria (Ed.), Phenolic
Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial,
Pharmaceutical and  Therapeutic  Applications. Intech  Open.
https://doi.org/10.5772/intechopen.94825

Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., &
Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory
molecules: a review., Molecules, 27, 2901.
https://doi.org/10.3390/molecules27092901

Alandia, G., Rodriguez, J. P., Jacobsen, S. E., Bazile, D., & Condori, B. (2020).
Global expansion of quinoa and challenges for the Andean region. Glob. Food
Secur. 26:100429. https://doi.org/10.1016/j.9fs.2020.100429

Aloisi, I., Parrotta, L., Ruiz, K. B., Landi, C., Bini, L., Cai, G., et al. (2016).
New insight into quinoa seed quality under salinity: changes in proteomic and
amino acid profiles, phenolic content, and antioxidant activity of protein
extracts. Front. Plant Sci. 7, 656. doi: 10.3389/fpls.2016.00656

Aluwi, N. A., Murphy, K. M., and Ganjyal, G. M. (2017). Physicochemical
characterization of different varieties of quinoa. Cereal Chem. 94, 847-856.
doi: 10.1094/CCHEM-10-16-0251-R

Anaya, R. B., La Cruz, D. E., Munoz-Centeno, E., Condor, L. M., and Leon, R.
R., and Carhuaz, R. (2022). Food and medicinal uses of ancestral andean grains
in the districts of quinua and acos vinchos (ayacucho-peru). Agronomy 12,
1014. doi: 10.3390/agronomy12051014

Ancico-Jojoa, W., Peixoto, J. R., Spehar, C. (2023). Hybridization between
progenies and agronomic characterization of the F2 generation in quinoa. Crop
Breed. Appl. Biotechnol. 23, e46292345. doi: 10.1590/1984-
70332023v23n43a40

Ando, H., Chen, Y.-C., Tang, H., Shimizu, M., Watanabe, K., & Mitsunaga, T.
(2002). Food components in fractions of quinoa seed. Food Sci. Technol. Res.
8, 80-84.

53


https://doi.org/10.1016/j.jcs.2018.06.009
https://doi.org/10.1016/j.agwat.2019.105784
https://doi.org/10.5772/intechopen.94825
https://doi.org/10.3390/molecules27092901
https://doi.org/10.1016/j.gfs.2020.100429
https://doi.org/10.3389/fpls.2016.00656
https://doi.org/10.1094/CCHEM-10-16-0251-R
https://doi.org/10.3390/agronomy12051014
https://doi.org/10.1590/1984-70332023v23n4a40
https://doi.org/10.1590/1984-70332023v23n4a40

Antognoni, F., Potente, G., Biondi, S., Mandrioli, R., Marincich, L., Ruiz, K.B.
(2021). Free and conjugated phenolic profiles and antioxidant activity in quinoa
seeds and their relationship with genotype and environment. Plants, 10, 1046.

Apaza, V., Caceres, G., Estrada, R., and Pinedo, R. (2015). Catalogue of
Commercial Varieties of Quinoa in Peru. A Future Planted Thousands of Years
Ago. Lima: FAAAOOTU Nations. (Lima).

Asher, A., Galili, S., Whitney, T., and Rubinovich, L. (2020). The potential of
quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for
grain production and livestock feed. Sci. Horti. 272, 109534. doi:
10.1016/j.scienta.2020.109534

Ayaz, M., Sadig, A., Junaid, M., Ullah, F., Ovais, M., Ullah, I., Ahmed, J., &
Shahid, M. (2019). Flavonoids as prospective neuroprotectants and their
therapeutic propensity in aging-associated neurological disorders. Front. aging
neurosci. 11, 155. doi: 10.3389/fhagi.2019.00155

Bazile, D., and Baudron, F. (2015). "The dynamics of the global expansion of
quinoa growing in view of its high biodiversity, in State of the Art Report on
Quinoa Around the World in 2013, eds. D. Bazile, D. Bertero and C. Nieto
(Rome: FAO/CIRADE), 44-55.

Bazile, D., Fuentes, F., & Mujica, A. (2013). Historical perspectives and
domestication. In A. Bhargava & S. Srivastava (Eds.), Quinoa: Botany,
Production and Uses. CABI Publishing.

Bazile, D., Jacobsen, S. E., and Verniau, A. (2016a). The global expansion of
quinoa: trends and limits. Front Plant Sci. 7, 622. doi: 10.3389/fpls.2016.00622

Bazile, D., Pulvento, C., Verniau, A., Al-Nusairi, M. S., Ba, D., Breidy, J., et
al. (2016b). Worldwide evaluations of quinoa: preliminary results from post
international year of quinoa FAQO projects in nine countries. Front. Plant Sci 7,
850. doi: 10.3389/fpls.2016.00850

Bedoya-Perales, N. S., Pumi, G., Talamini, E., and Padula, A. D. (2018). The
quinoa boom in Peru: will land competition threaten sustainability in one of the
cradles of agriculture? Land Use Policy 79, 475-480. doi:
10.1016/j.landusepol.2018.08.039

Belgaroui, N., El Ifa, W., & Hanin, M. (2022). Phytic acid contributes to the

phosphate-zinc signalling crosstalk in Arabidopsis. Plant. Physiol. Biochem.
183, 1-8. doi: 10.1016/j.plaphy.2022.04.029

Bendevis, M. A., Sun, Y., Rosengvist, E., Shabala, S., Liu, F., & Jacobsen, S.
E. (2014). Photoperiodic effects on short-pulse 14C assimilation and overall
carbon and nitrogen allocation patterns in contrasting quinoa cultivars.
Environmental and Experimental Botany, 104:9-15.

Benlhabib, O., Boujartani, N., Maughan, P. J., Jacobsen, S. E., and Jellen, E.
N. (2016). Elevated Genetic Diversity in an F-2, 6. population of quinoa

54


https://doi.org/10.1016/j.scienta.2020.109534
https://doi.org/10.3389/fnagi.2019.00155
https://doi.org/10.3389/fpls.2016.00622
https://doi.org/10.3389/fpls.2016.00850
https://doi.org/10.1016/j.landusepol.2018.08.039
https://doi.org/10.1016/j.plaphy.2022.04.029

(Chenopodium quinoa) developed through an inter-ecotype cross. Front. Plant
Sci. 7, 1222. doi: 10.3389/fpls.2016.01222

Biodiversity International, FAO, PROINPA, I, and IFAD, A. (2013).
Descriptors for quinoa (Chenopodium quinoa Willd.) and wild relatives, in
Biodiversity International, FAO, PROINPA, INIAF, and IFAD. 2013 (Rome:
Biodiversity International and FAO)

Bock, D. E., Cnops, P., Muylle, G., Quataert, H., and Eeckhout, P. M., and Van
Bockstaele, F. (2022). Physicochemical characterization of thirteen quinoa
(Chenopodium quinoa Willd.) varieties grown in north-west Europe 1l. Plants
11:265. doi: 10.3390/plants11030265

Boye, J., Wijesinha-Bettoni, R., and Burlingame, B. (2012). Protein quality
evaluation twenty years after the introduction of the protein digestibility
corrected amino acid score method. Br. J. Nutr. 108, S183-S211. doi:
10.1017/S0007114512002309

Buitrago, D., Buitrago-Villanueva, 1., Barbosa-Cornelio, R., Coy-Barrera, E.
(2019). Comparative examination of antioxidant capacity and fingerprinting of
unfractionated extracts from different plant parts of quinoa (Chenopodium
quinoa) grown under greenhouse conditions. Antioxidants 8:238. doi:
10.3390/antiox8080238

Burrieza, H. P., Lopez-Fernandez, M. P., and Maldonado, S. (2014). Analogous
reserve distribution and tissue characteristics in quinoa and grass seeds suggest
convergent evolution. Front. Plant Sci 5, 546. doi: 10.3389/fpls.2014.00546

Bvenura, C., and Kambizi, L. (2022). Future grain crops, in Future Foods
Global Trends, Opportunities, and Sustainability Challenges, ed. R. Bhat
(London: Academic Press), 81-105. doi: 10.1016/B978-0-323-91001-9.00032-
3

Caleja, C., Ribeiro, A., Barreiro, M. F., & Ferreira, I. C. F. R. (2017). Phenolic
compounds as nutraceuticals or functional food ingredients. Curr. Pharm. Des.
23, 2787-2806. https://doi.org/10.2174/1381612822666161227153906

Chen, Y. S., Aluwi, N. A., Saunders, S. R., Ganjyal, G. M., and Medina-Meza,
I. G. (2019). Metabolic fingerprinting unveils quinoa oil as a source of bioactive
phytochemicals. Food Chem. 286, 592-599. doi:
10.1016/j.foodchem.2019.02.016

Choukr-Allah, R., Rao, N. K., Hirich, A., Shahid, M., Alshankiti, A., Toderich,
K., et al. (2016). Quinoa for marginal environments: toward future food and
nutritional security in MENA and Central Asia regions. Front. Plant Sci. 7, 346.
doi: 10.3389/fpls.2016.00346

Chrungoo, N. K., and Chettry, U. (2021). Buckwheat: a critical approach
towards assessment of its potential as a super crop. Indian J. Genet. Plant
Breed. 81, 1-23. doi: 10.31742/1JGPB.81.1.1

55


https://doi.org/10.3389/fpls.2016.01222
https://doi.org/10.3390/plants11030265
https://doi.org/10.1017/S0007114512002309
https://www.mdpi.com/2076-3921/8/8/238
https://doi.org/10.3389/fpls.2014.00546
https://doi.org/10.1016/B978-0-323-91001-9.00032-3
https://doi.org/10.1016/B978-0-323-91001-9.00032-3
https://doi.org/10.2174/1381612822666161227153906
https://doi.org/10.1016/j.foodchem.2019.02.016
https://doi.org/10.3389/fpls.2016.00346
https://doi.org/10.31742/IJGPB.81.1.1

Contreras-Jimenez, B., Torres-Vargas, O. L., and Rodriguez-Garcia, M. E.
(2019). Physicochemical characterization of quinoa (Chenopodium quinoa)
flour and isolated starch. Food Chem. 298, 124982. doi:
10.1016/j.foodchem.2019.124982

Craine, E. B., and Murphy, K. M. (2020). Seed composition and amino acid
profiles for quinoa grown in Washington State. Front. Nutr. 7, 126. doi:
10.3389/fnut.2020.00126

Christiansen, J., Jacobsen, S. E., & Jergensen, S. (2010). Photoperiodic effect
on flowering and seed development in quinoa (Chenopodium quinoa Willd.).
Acta Agriculturae Scandinavica Section B — Soil and Plant Science, 60:539—
544,

Curti, R. N., Sanahuja, M. D., Vidueiros, S. M., Curti, C. A., Pallaro, A. N,
Bertero, H. D., et al. (2020). Qil quality in sea-level quinoa as determined by
cultivar-specific responses to temperature and radiation conditions. J. Sci. Food
Agri. 100, 1358-1361. doi: 10.1002/jsfa.10092

Curti, R. N., Sanahuja, M. D., Vidueiros, S. M., Pallaro, A. N., and Bertero, H.
D. (2018). The trade-off between seed yield components and seed composition
traits in sea level quinoa in response to sowing dates. Cereal Chem. 95, 734—
741. doi: 10.1002/cche.10088

De Bock, P., Daelemans, P., Selis, L., Raes, L., Vermeir, K., Eeckhout, P. M.,
et al. (2021a). Comparison of the chemical and technological characteristics of
wholemeal flours obtained from amaranth (Amaranthus sp.), quinoa
(Chenopodium quinoa), and buckwheat (Fagopyrum sp.) seeds. Foods 10, 651.
doi: 10.3390/foods10030651

De Bock, P, Van Bockstaele, P., Muylle, F., Quataert, H., Vermeir, P.,
Eeckhout, P. M., etal. (2021b). yield and nutritional characterization of thirteen
quinoa (Chenopodium quinoa Willd.) varieties grown in north-west Europe |I.
Plants 10, 689. doi: 10.3390/plants10122689

Dong, J. L., Huang, L., Chen, W. W,, Zhu, Y. Y., Dun, B. Q., Shen, R. L., et
al. (2021). Effect of heat-moisture treatments on digestibility and
physicochemical property of whole quinoa flour. Foods 10, 3042. doi:
10.3390/foods10123042

Dumschott, K., Wuyts, N., Alfaro, C., Castillo, D., Fiorani, F., Zurita-Silva, A.,
etal. (2022). Morphological and physiological traits associated with yield under
reduced irrigation in Chilean coastal lowland quinoa. Plants 11, 323. doi:
10.3390/plants11030323

El Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., Kacimi, K. E.
L., & Yasri, A. (2020). An insight into saponins from Quinoa (Chenopodium
quinoa Willd): A review. Molecules, 2, 1059. doi: 10.3390/molecules25051059

El-Hawary, S. S., Mohammed, R., AbouZid, S., Ali, Z. Y., EI-Gendy, A. O., &
Elwekeel, A. (2016). In-vitro cyclooxygenase inhibitory, antioxidant, and

56


https://doi.org/10.1016/j.foodchem.2019.124982
https://doi.org/10.3389/fnut.2020.00126
https://doi.org/10.1002/jsfa.10092
https://doi.org/10.1002/cche.10088
https://doi.org/10.3390/foods10030651
https://doi.org/10.3390/plants10122689
https://doi.org/10.3390/foods10123042
https://doi.org/10.3390/plants11030323
https://doi.org/10.3390/molecules25051059

antimicrobial activities of phytochemicals isolated from Crassula arborescens
(Mill.) Willd. J. Nat. Prod. 9, 8-14.

El-Serafy, R. S., EI-Sheshtawy, A. N. A., Abd EI-Razek, U. A., Abd El-Hakim,
A. F., Hasham, M. M. A., Sami, R., et al. and Al-Mushhin, A.a.M. (2021).
Growth, yield, quality, and phytochemical behavior of three cultivars of quinoa
in response to moringa and Azolla extracts under organic farming conditions.
Agronomy 11, 186. doi: 10.3390/agronomy11112186

El-Sohaimy, S., and Mehany, T. (2015). Physicochemical and functional
properties of quinoa protein isolate. Annal Agri. Sci. 60, 297-305. doi:
10.1016/j.a0as.2015.10.007

Encina-Zelada, C., Cadavez, V., Pereda, J., Gomez-Pando, L., Salva-Ruiz, B.,
Teixeira, J. A., et al. (2017). Estimation of composition of quinoa
(Chenopodium quinoa Willd.) grains by near-infrared transmission
spectroscopy. Lwt-Food  Sci.  Technol. 79, 126-134.  doi:
10.1016/j.lwt.2017.01.026

Escuredo, O., Martin, M. I. G., Moncada, G. W., Fischer, S., and Hierro, J. M.
H. (2014). Amino acid profile of the quinoa (Chenopodium quinoa Willd.)
using near-infrared spectroscopy and chemometric techniques. J. Cereal Sci.
60, 67—74. doi: 10.1016/j.jcs.2014.01.016

Eurisco (2022). The European Search Catalogue for Plant Genetic Resources
(EURISCO). Available online at: https://eurisco.ipk-gatersleben.de/apex/f?p=
10357::::P57_NATIONAL INVENTORY,P57 INCLUDE _SYNONYMS:12
.NO (accessed Februry 11, 2022).

FAOQO. (2013a). Dietary protein quality evaluation in human nutrition. Report of
an FAO Expert Consultation. FAO Food and Nutrition Paper, 92.

FAO. (2013b). Quinoa 2013 International Year. Available at
https://www.fao.org/quinoa-2013/what-is-quinoa/varieties/variety-groups-by-
ecological-adaptation-zones/en/?no_mobile=1 Accessed 13. 12. 2023

Faostat (2022). Crops and livestock production. Rome, Italy: Statistics
Division, Food and Agriculture Organization of the United Nations. Available
online at: https://www.fao.org/faostat/en/#data/QCL (accessed January 31,
2022).

Ferreira, D. S. Pallone, J. A. L., and Poppi, R. J. (2015). Direct analysis of the
main chemical constituents in Chenopodium quinoa grain using Fourier
transform near-infrared spectroscopy. Food Control 48, 91-95. doi:
10.1016/j.foodcont.2014.04.016

Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant’Ana, H. M.,
Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: Nutritional, functional,
and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 57, 1618-1630. doi:
10.1080/10408398.2014.1001811

57


https://doi.org/10.3390/agronomy11112186
https://doi.org/10.1016/j.aoas.2015.10.007
https://doi.org/10.1016/j.lwt.2017.01.026
https://doi.org/10.1016/j.jcs.2014.01.016
https://eurisco.ipk-gatersleben.de/apex/f?p=10357%3A%3A%3A%3AP57_NATIONAL_INVENTORY%2CP57_INCLUDE_SYNONYMS%3A12%2CNO
https://eurisco.ipk-gatersleben.de/apex/f?p=10357%3A%3A%3A%3AP57_NATIONAL_INVENTORY%2CP57_INCLUDE_SYNONYMS%3A12%2CNO
https://eurisco.ipk-gatersleben.de/apex/f?p=10357%3A%3A%3A%3AP57_NATIONAL_INVENTORY%2CP57_INCLUDE_SYNONYMS%3A12%2CNO
https://www.fao.org/quinoa-2013/what-is-quinoa/varieties/variety-groups-by-ecological-adaptation-zones/en/?no_mobile=1
https://www.fao.org/quinoa-2013/what-is-quinoa/varieties/variety-groups-by-ecological-adaptation-zones/en/?no_mobile=1
https://www.fao.org/faostat/en/%23data/QCL
https://doi.org/10.1016/j.foodcont.2014.04.016
https://doi.org/10.1080/10408398.2014.1001811

Fischer, S., Wilckens, R., Jara, J., and Aranda, M. (2013). Variation in
antioxidant capacity of quinoa (Chenopodium quinoa Will) subjected to
drought  stress. Ind. Crops Products 46, 341-349. doi:
10.1016/j.indcrop.2013.01.037

Fischer, S., Wilckens, R., Jara, J., & Aranda, M. (2017). Variation in
antioxidant capacity of quinoa (Chenopodium quinoa Will) subjected to
drought stress. Industrial Crops and Products 41:341-349. doi:
10.1016/j.indcrop.2013.01.037

Fuentes, F., & Bhargava, A. (2011). Morphological analysis of quinoa
germplasm grown under lowland desert conditions. J. Agron. Crop. Sci. 197,
124-134. doi: 10.1111/j.1439-037X.2010.00445.x

Fuentes, F. F., Bazile, D., Bhargava, A., & Martinez, E. A. (2012). Implications
of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by
its genetic diversity in Chile. J. Agron. Crop. Sci. 150, 702-716. doi:
10.1017/S0021859612000056

Galluzzi, G., and Noriega, I. L. (2014). Conservation and use of genetic
resources of underutilized crops in the Americas - a continental analysis.
Sustainability 6, 980-1017. doi: 10.3390/su6020980

Garcia-Parra, M., Roa-Acosta, D., Garcia-Londono, V., Moreno-Medina, B.,
and Bravo-Gomez, J. (2021). Structural characterization and antioxidant
capacity of quinoa cultivars using techniques of FT-MIR and UHPLC/ESI-
Orbitrap MS spectroscopy. Plants 10, 159. doi: 10.3390/plants10102159

Garcia-Parra, M. A., Roa-Acosta, D. F., Bravo-Gomez, J. E., Hernandez-
Criado, J. C., and Villada-Castillo, H. S. (2022). Effects of altitudinal gradient
on physicochemical and rheological potential of quinoa cultivars. Front. Sust.
Food Systems 6, 862238. doi: 10.3389/fsufs.2022.862238

Gardner, M., Maliro, M. F. A., Goldberger, J. R., and Murphy, K. M. (2019).
Assessing the potential adoption of quinoa for human consumption in central
Malawi. Front. Sust. Food Syst. 3, 52. doi: 10.3389/fsufs.2019.00052

Gargiulo, L., Grimberg, A., Repo-Carrasco-Valencia, R., Carlsson, A. S., and
Mele, G. (2019). Morpho-densitometric traits for quinoa (Chenopodium quinoa
Willd.) seed phenotyping by two X-ray micro-CT scanning approaches. J
Cereal Sci. 90, 102829. doi: 10.1016/j.jcs.2019.102829

Gawlik-Dziki, U., Swieca, M., Sutkowski, M., Dziki, D., Baraniak, B., & Czyz,
J. (2013). Antioxidant and anticancer activities of Chenopodium quinoa leaves
extracts - In vitro study. Food Chem. Toxicol. 57, 154-160.
https://doi.org/10.1016/j.fct.2013.03.023

Genesys (2022). Available online at: https://www.genesys-pgr.org/a/
v20k2159rW9 (accessed February 15, 2022).

Ghumman, A., Mudgal, S., Singh, N., Ranjan, B., Kaur, A., Rana, J. C., et al.
(2021). Physicochemical, functional and structural characteristics of grains,

58


https://doi.org/10.1016/j.indcrop.2013.01.037
https://doi.org/10.1016/j.indcrop.2013.01.037
https://doi.org/10.1111/j.1439-037X.2010.00445.x
https://doi.org/10.1017/S0021859612000056
https://doi.org/10.3390/su6020980
https://doi.org/10.3390/plants10102159
https://doi.org/10.3389/fsufs.2022.862238
https://doi.org/10.3389/fsufs.2019.00052
https://doi.org/10.1016/j.jcs.2019.102829
https://doi.org/10.1016/j.fct.2013.03.023
https://www.genesys-pgr.org/a/v2Ok2159rW9
https://www.genesys-pgr.org/a/v2Ok2159rW9

flour and protein isolates of Indian quinoa lines. Food Res. Int. 140, 109982.
doi: 10.1016/j.foodres.2020.109982

Gilani, G. S. Xiao, Ch. W., and Cockell, K. A. (2012). Impact of antinutritional
factors in food proteins on the digestibility of protein and the bioavailability of
amino acids and on protein quality. Br. J. Nutr. 108, S315-S332. doi:
10.1017/S0007114512002371

Gomez, M. J. R., Prieto, J. M., Sobrado, V. C., and Magro, P. C. (2021).
Nutritional characterization of six quinoa (Chenopodium quinoa Willd)
varieties cultivated in Southern Europe. J. Food Comp. Anal. 99, 103876. doi:
10.1016/j.jfca.2021.103876

Gonzalez, J. A., Konishi, Y., Bruno, M., Valoy, M., and Prado, F. E. (2012).
Interrelationships among seed yield, total protein, and amino acid composition
of ten quinoa (Chenopodium quinoa) cultivars from two different
agroecological regions. J. Sci. Food Agri. 92, 1222-1229. doi:
10.1002/jsfa.4686

Gomez-Pando, L. (2015). Quinoa: Improvement and Sustainable Production.
In K. Murphy & J. Matanguihan (Eds.), Quinoa: Improvement and Sustainable
Production (pp. 87-107). John Wiley & Sons, Inc.

Gomez-Pando, L. R., & Eguiluz de la Barra, A. L. (2011). Catalogo del banco
de germoplasma de quinua (Chenopodium quinoa Willd). Ministerie del
Ambiente, Lima.

Graf, B. L., Rojo, L. E., Delatorre-Herrera, J., Poulev, A., Calfio, C., Raskin,
I, et al. (2016). Phytoecdysteroids and flavonoid glycosides among Chilean
and commercial sources of Chenopodium guinoa: variation and correlation to
physico- chemical characteristics. J. Sci. Food Agri. 96, 633-643. doi:
10.1002/jsfa.7134

Granado-Rodriguez, S., Aparicio, N., Matias, J., Perez-Romero, L. F., Maestro,
I., Graces, |., etal. (2021a). Studying the impact of different field environmental
conditions on seed quality of quinoa: the case of three different years changing
seed nutritional traits in southern Europe. Front. Plant Sci. 12, 649132. doi:
10.3389/fpls.2021.649132

Granado-Rodriguez, S., Vilarino-Rodriguez, S., Maestro-Gaitan, |., Matias, J.,
Rodriguez, M. J., Calvo, P., et al. (2021b). Genotype-dependent variation of
nutritional quality-related traits in quinoa seeds. Plants 10, 128. doi:
10.3390/plants10102128

Granda, L., Rosero, A., Benesova, K., Pluhackova, H., Neuwirthova, J., Cerkal,
R., et al. (2018). Content of selected vitamins and antioxidants in colored and
non-pigmented varieties of quinoa, barley, and wheat grains. J. Food Sci. 83,
2439-2447. doi: 10.1111/1750-3841.14334

Grimberg, A., Saripella, G. V., Valencia, R., Bengtsson, T., Alandia, G.,
Carlsson, A. S., et al. (2022). Transcriptional regulation of quinoa seed quality:

59


https://doi.org/10.1016/j.foodres.2020.109982
https://doi.org/10.1017/S0007114512002371
https://doi.org/10.1016/j.jfca.2021.103876
https://doi.org/10.1002/jsfa.4686
https://doi.org/10.1002/jsfa.7134
https://doi.org/10.3389/fpls.2021.649132
https://doi.org/10.3390/plants10102128
https://doi.org/10.1111/1750-3841.14334

identification of novel candidate genetic markers for increased protein content.
Front. Plant Sci. 13, 816425. doi: 10.3389/fpls.2022.816425

Habiyaremye, C., Ndayiramije, O., Guedes, J. D., and Murphy, K. M. (2022).
Assessing the adaptability of quinoa and millet in two agroecological zones of
Rwanda. Front. Sust. Food Syst. 6, 850280. doi: 10.3389/fsufs.2022.850280

He, X., Wang, B., Zhao, B., and Yang, F. (2022). Ultrasonic assisted extraction
of quinoa (Chenopodium quinoa Willd.) protein and effect of heat treatment on
its in vitro digestion characteristics. Foods 11, 771. doi:
10.3390/foods11050771

Hinojosa, L., Leguizamo, A., Carpio, C., Munoz, D., Mestanza, C., Ochoa, J.,
et al. (2021). Quinoa in Ecuador: recent advances under global expansion.
Plants 10, 298. doi: 10.3390/plants10020298

Hou, X., Sang, Y., & Dong, L. (2022). The improved effect and its mechanism
of phytic acid on DSS-induced UC mice. Life Sci. 311. doi:
10.1016/j.1f5.2022.121139

Hussain, M. I., Farooq, M., Syed, Q. A, Ishag, A., Al-Ghamdi, A. A,
Hatamleh, A. A., et al. (2021). Botany, nutritional value, phytochemical
composition and biological activities of quinoa. Plants 10, 2258. doi:
10.3390/plants10112258

Hussain, M. 1., Muscolo, A., Ahmed, M., Asghar, M. A., and Al-Dakheel, A. J.
(2020). Agro-morphological, yield and quality traits and interrelationship with
yield stability in Quinoa (Chenopodium guinoa Willd.) genotypes under saline
marginal environment. Plants 9, 1763. doi: 10.3390/plants9121763

Jacobsen, S. E. (2011). The situation for quinoa and its production in southern
Bolivia: from economic success to environmental disaster. J. Agron. Crop Sci.
197, 390-399. doi: 10.1111/j.1439-037X.2011.00475.x

Jacobsen, S. E. (2017). The scope for adaptation of quinoa in Northern latitudes
of Europe. J. Agron. Crop Sci. 203, 603-613. doi: 10.1111/jac.12228

Jacobsen, S. E., and Christiansen, J. L. (2016). Some agronomic strategies for
organic quinoa (Chenopodium quinoa Willd). J. Agron. Crop Sci. 202, 454—
463. doi: 10.1111/jac.12174

Jacobsen, S. E., and Mujica, A. (2002). Genetic resources and breeding of the
Andean grain crop quinoa (Chenopodium quinoa Willd). Plant Genetic Res.
Newsletter 130, 54-61.

Jacobsen, S. E., Mujica, A., and Ortiz, R. (2003). La importancia de los cultivos
andinos. Fermentum 13, 14-24.

Jiang, F., Ren, Y. J., Du, C. W., Nie, G., Liang, J. B,, Yu, X. Z., et al. (2021).
Effect of pearling on the physicochemical properties and antioxidant capacity

of quinoa (Chenopodium quinoa Willd.) flour. J. Cereal Sci. 102, 103330. doi:
10.1016/j.jcs.2021.103330

60


https://doi.org/10.3389/fpls.2022.816425
https://doi.org/10.3389/fsufs.2022.850280
https://doi.org/10.3390/foods11050771
https://doi.org/10.3390/plants10020298
https://doi.org/10.1016/j.lfs.2022.121139
https://doi.org/10.3390/plants10112258
https://doi.org/10.3390/plants9121763
https://doi.org/10.1111/j.1439-037X.2011.00475.x
https://doi.org/10.1111/jac.12228
https://doi.org/10.1111/jac.12174
https://doi.org/10.1016/j.jcs.2021.103330

Jimenez, M. D., Lobo, M., and Samman, N. (2019), 12th. IFDC 2017 Special
Issue - Influence of germination of quinoa (Chenopodium quinoa) and
amaranth (Amaranthus) grains on nutritional and techno-functional properties
of their flours. J. Food Comp. Anal. 84, 103290. doi:
10.1016/j.jfca.2019.103290

Karlund, A., Paukkonen, 1., Gomez-Gallego, C., Kolehmainen, M. (2021).
Intestinal exposure to food-derived protease inhibitors: Digestion physiology-
and gut health-related  effects. Healthcare 9, 1002. doi:
10.3390/healthcare9081002

Kheto, A., Joseph, D., Islam, M., Dhua, S., Das, R., Kumar, Y., et al. (2022).
Microwave roasting induced structural, morphological, antioxidant, and
functional attributes of Quinoa (Chenopodium quinoa Willd). J. Food Proc.
Preserv. 46, e16595. doi: 10.1111/jfpp.16595

Kiokias, S., & Oreopoulou, V. (2021). A review of the health protective effects
of phenolic acids against a range of severe pathologic conditions (Including
coronavirus-based infections). Molecules, 26, 5405.
https://doi.org/10.3390/molecules26175405

Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020).
Flavonoids as anticancer agents. Nutrients, 12, 457,
https://doi.org/10.3390/nu12020457

Koziol, M. J. (1992). Chemical composition and nutritional value of quinoa
(Chenopodium quinoa Willd). J. Food Comp. Anal. 5, 35-68. doi:
10.1016/0889-1575(92)90006-6

Lamothe, L. M., Srichuwong, S., Reuhs, B. L., & Hamaker, B. R. (2015).
Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.)
provide dietary fibres high in pectic substances and xyloglucans. Food Chem.
167, 490-496. doi: 10.1016/j.foodchem.2014.07.022

Lee, H. H., Loh, S. P., Bong, C. F. J., Sarbini, S. R., & Yiu, P. H. (2015). Impact
of phytic acid on nutrient bioaccessibility and antioxidant properties of
dehusked rice. J. Food Technol. 52, 7806-7816. doi: 10.1007/s13197-015-
1918-9

Lesjak, J., and Calderini, D. F. (2017). Increased night temperature negatively
affects grain yield, biomass, and grain number in Chilean quinoa. Front. Plant
Sci. 8, 352. doi: 10.3389/fpls.2017.00352

Li, G. T., Wang, S. N., and Zhu, F. (2016). Physicochemical properties of
qguinoa  starch. Carbohydrate ~ Polym. 137, 328-338.  doi:
10.1016/j.carbpol.2015.10.064

Li, G. T., and Zhu, F. (2017). Molecular structure of quinoa starch.
Carbohydrate Polym. 158, 124-132. doi: 10.1016/j.carbpol.2016.12.001

61


https://doi.org/10.1016/j.jfca.2019.103290
https://doi.org/10.3390/healthcare9081002
https://doi.org/10.1111/jfpp.16595
https://doi.org/10.3390/molecules26175405
https://doi.org/10.3390/nu12020457
https://doi.org/10.1016/0889-1575(92)90006-6
https://doi.org/10.1016/j.foodchem.2014.07.022
https://doi.org/10.1007/s13197-015-1918-9
https://doi.org/10.1007/s13197-015-1918-9
https://doi.org/10.3389/fpls.2017.00352
https://doi.org/10.1016/j.carbpol.2015.10.064
https://doi.org/10.1016/j.carbpol.2016.12.001

Liener. (2003). Plant Antinutritional Factors: Detoxification. In B. Caballero
(Ed.), Encyclopedia of Food Sciences and Nutrition (Second Edition) (pp.
4587-4593). Academic Press.

Lim, J. G, Park, H. M., & Yoon, K. S. (2020). Analysis of saponin composition
and comparison of the antioxidant activity of various parts of the quinoa plant
(Chenopodium quinoa Willd.). Food Sci. Nutr. 8, 694-702. doi:
10.1002/fsn3.1358

Lin, M., Han, P., Li, Y., Wang, W., Lai, D., & Zhou, L. (2019). Quinoa
secondary metabolites and their biological activities or functions. Molecules,
24, 1215. https://doi.org/10.3390/molecules24132512

Liu, J., Du, C., Beaman, H. T., & Monroe, M. B. B. (2020a). Characterization
of phenolic acid antimicrobial and antioxidant structure-property relationships.
Pharmaceutics, 12, 419. https://doi.org/10.3390/pharmaceutics12050419

Liu, J., Wang, Z., Wang, Z., Hao, Y., Wang, Y., Yang, Z., Li, W., Wang., J.
(2020b). Physicochemical and functional properties of soluble dietary fiber
from different colored gquinoa varieties (Chenopodium quinoa Willd). J. Cereal
Sci. 95, 103045. doi: https://doi.org/10.1016/j.jcs.2020.103045

Lorusso, A., Verni, M., Montemurro, M., Coda, R., Gobetti, M., Rizzelo, C. G.,
et al. (2017). Use of fermented quinoa flour for pasta making and evaluation of
the technological and nutritional features. LWT Food Sci. Technol. 78, 215—
221. doi: 10.1016/j.Iwt.2016.12.046

Lutz, M., Martinez, A., & Martinez, E. A. (2013). Daidzein and Genistein
contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes
grown in arid Chile. Ind. Crops. Prod. 49, 117-121.
https://doi.org/10.1016/j.indcrop.2013.04.023

Manjarres-Hernandez, E. H., Arias-Moreno, D. M., Morillo-Coronado, A. C.,
Ojeda-Perez, Z. Z., and Cardenas-Chaparro, A. (2021). Phenotypic
characterization of quinoa (Chenopodium quinoa Willd.) for the selection of
promising materials for breeding programs. Plants 10, 1339. doi:
10.3390/plants10071339

Maradini, A. M., Pirozi, M. R., and Borges, J. T. D. Sant’ana, H.M.P., Chaves,
J.B.P.,, and Coimbra, J. (2017). Quinoa: Nutritional, functional, and
antinutritional aspects. Crit. Rev. Food Sci. Nutr. 57, 1618-1630. doi:
10.1080/10408398.2014.1001811

Martin, M. I. G., Moncada, G. W., Fischer, S., and Escuredo, O. (2014).
Chemical characteristics and mineral composition of quinoa by near-infrared
spectroscopy. J. Sci. Food Agri. 94, 876-881. doi: 10.1002/jsfa.6325
Masunaga, T., Murao, N., Tateishi, H., Koga, R., Ohsugi, T., Otsuka, M., &
Fujita, M. (2019). Anti-cancer activity of the cell membrane-permeable phytic
acid prodrug. Bioorg. Chem. 92, 103240. doi: 10.1016/j.bioorg.2019.103240

62


https://doi.org/10.1002/fsn3.1358
https://doi.org/10.3390/molecules24132512
https://doi.org/10.3390/pharmaceutics12050419
https://doi.org/10.1016/j.jcs.2020.103045
https://doi.org/10.1016/j.lwt.2016.12.046
https://doi.org/10.1016/j.indcrop.2013.04.023
https://doi.org/10.3390/plants10071339
https://doi.org/10.1080/10408398.2014.1001811
https://doi.org/10.1002/jsfa.6325
https://doi.org/10.1016/j.bioorg.2019.103240

Matias, J., Rodriguez, M. J., Cruz, V., Calvo, P., and Reguera, M. (2021). Heat
stress lowers yields, alters nutrient uptake, and changes seed quality in quinoa
grown under Mediterranean field conditions. J. Agron. Crop Sci. 207, 481-491.
doi: 10.1111/jac.12495

Matias, J., Rodriguez, M. J., Granado-Rodriguez, S., Cruz, V., Calvo, P,
Reguera, M., et al. (2022). Changes in quinoa seed fatty acid profile under heat
stress field conditions. Front. Nutr. 9, 820010. doi: 10.3389/fhut.2022.820010

Mhada, M., Metougui, M. L., El Hazzam, K., El Kacimi, K., and Yasri, A.
(2020). Variations of saponins, minerals, and total phenolic compounds due to
processing and cooking of quinoa (Chenopodium quinoaWilld.) Seeds. Foods
9, 660. doi: 10.3390/foods9050660

Miranda, M., Vega-Galvez, A., Martinez, E., Lopez, J., Rodriguez, M. J.,
Henriquez, K., et al. (2012). Genetic diversity and comparison of
physicochemical and nutritional characteristics of six quinoa (Chenopodium
quinoa Willd.) genotypes cultivated in Chile. Ciencia E Tecnol. De Alimentos
32, 835-843. doi: 10.1590/S0101-20612012005000114

Miranda, M., Vega-Galvez, A., Martinez, E. A., Lopez, J., Marin, R., Aranda,
M., et al. (2013). Influence of contrasting environments on seed composition of
two quinoa genotypes: nutritional and functional properties. Chilean J. Agric.
Res. 73, 108-116. doi: 10.4067/S0718-58392013000200004

Mosyakin, S. L., and Schwartau, V. V. (2015). Quinoa is a promising
pseudocereal crop for Ukraine. Agri. Sci. Prac. 2, 3-11. doi:
10.15407/agrisp2.01.003

Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A. S., Torres, D., et al.
(2016). Protein content and amino acids profile of pseudocereals. Food Chem.
193, 55-61. doi: 10.1016/j.foodchem.2014.11.043

Nassar, R., Nassar, M., Vianna, M. E., Naidoo, N., Algutami, F., Kaklamanos,
E. G, Senok, A., & Williams, D. (2021). Antimicrobial activity of phytic acid:
an emerging agent in endodontics. Front. cell. infect. microbiol. 11. doi:
10.3389/fcimb.2021.753649

Nascimento, A. C., Mota, C., Coelho, I., Gueirao, S., Santos, M., Matos, A. S.,
et al. (2014). Characterization of nutrient profile of quinoa (Chenopodium
quinoa); amaranth (Amaranthus caudatus), and purple corn (Zea mays L.)
consumed in the North of Argentina: Proximates, minerals and trace elements.
Food Chem. 148, 420-426. doi: 10.1016/j.foodchem.2013.09.155

Nowak, V., Du, J., and Charrondiere, U. R. (2016). Assessment of the
nutritional composition of quinoa (Chenopodium quinoa Willd). Food Chem.
193, 47-54. doi: 10.1016/j.foodchem.2015.02.111

Nufiez De Arco, S. (2015). Quinoa’s calling in Quinoa Improvement and
Sustainable Production, eds. K. M. Murphy and J. Matanguihan (Hoboken, NJ:
John Wiley and Sons, Inc.), 211-226.

63


https://doi.org/10.1111/jac.12495
https://doi.org/10.3389/fnut.2022.820010
https://doi.org/10.3390/foods9050660
https://doi.org/10.1590/S0101-20612012005000114
https://doi.org/10.4067/S0718-58392013000200004
https://doi.org/10.15407/agrisp2.01.003
https://doi.org/10.1016/j.foodchem.2014.11.043
https://doi.org/10.3389/fcimb.2021.753649
https://doi.org/10.1016/j.foodchem.2013.09.155
https://doi.org/10.1016/j.foodchem.2015.02.111

Opazo-Navarrete, M., Tagle Freire, D., Boom, R. M., and Janssen, A. E. M.
(2019). The influence of starch and fibre on in vitro protein digestibility of dry
fractionated quinoa seed (Riobamba variety). Food Biophys. 14, 49-59. doi:
10.1007/s11483-018-9556-1

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An
overview. J. Nutr. Sci. 5, 1-15. https://doi.org/10.1017/jns.2016.41

Pasko, P., Sajewicz, M., Gorinstein, S., & Zachwieja, Z. (2008). Analysis of
selected phenolic acids and flavonoids in Amaranthus cruentus and
Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatogr. 20, 661
672. doi: 10.1556/AChrom.20.2008.4.11

Pathan, S., Ndunguru, G., Clark, K., Ayele, G. A. (2023). Yield and nutritional
responses of quinoa (Chenopodium quinoa Willd.) genotypes to irrigated,
rainfed, and drought-stress environments. Front. sustain. food syst. 7, 1242187.
https://doi.org/10.3389/fsufs.2023.1242187

Paucar-Menacho, L. M., Duenas, M., Penas, E., Frias, J., and Martinez-
Villaluenga, C. (2018). Effect of dry heat puffing on nutritional composition,
fatty acid, amino acid, and phenolic profiles of pseudocereals grains. Polish J.
Food Nut. Sci. 68, 289-297. doi: 10.1515/pjfns-2018-0005

Pedrali, D., Giupponi, L., De la Pena-Armada, R., Villanueva-Suarez, M. I.
(2023). The quinoa variety influences the nutritional and antioxidant profile
rather than the geographic factors. Food Chem. 402, 133531. doi:
10.1016/j.foodchem.2022.133531

Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernandez-Lopez,
J., Perez-Alvarez, J. A., etal. (2018). Chemical, fatty acid, polyphenolic profile,
techno-functional, and antioxidant properties of flours obtained from quinoa
(Chenopodium quinoa Willd) seeds. Ind. Crops Prod. 111, 38-46. doi:
10.1016/j.indcrop.2017.10.006

Peng, M. J., Yin, L. S., Dong, J. L., Shen, R. L., and Zhu, Y. Y. (2022).
Physicochemical characteristics and in vitro digestibility of starches from
colored quinoa (Chenopodium quinoa) varieties. J. Food Sci. 87, 2147-2158.
doi: 10.1111/1750-3841.16126

Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V.,
Ferreira, 1., et al. (2019). Chemical and nutritional characterization of
Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious
food. Food Chem. 280, 110-114. doi: 10.1016/j.foodchem.2018.12.068

Pinto, A. A., Fischer, S., Wilckens, R., Bustamante, L., and Berti, M. T. (2021).
Production efficiency and total protein yield in quinoa grown under water
stress. Agriculture 11, 1089. doi: 10.3390/agriculture11111089

Prado, F. E., Fernandez-Turiel, J. L., Tsarouchi, M., Psaras, G. K., and
Gonzalez, J. A. (2014). Variation of seed mineral concentrations in seven
quinoa cultivars grown in two agroecological sites. Cereal Chem. 91, 453-459.
doi: 10.1094/CCHEM-08-13-0157-R

64


https://doi.org/10.1007/s11483-018-9556-1
https://doi.org/10.1017/jns.2016.41
https://doi.org/10.1556/AChrom.20.2008.4.11
https://doi.org/10.3389/fsufs.2023.1242187
https://doi.org/10.1515/pjfns-2018-0005
https://doi.org/10.1016/j.foodchem.2022.133531
https://doi.org/10.1016/j.indcrop.2017.10.006
https://doi.org/10.1111/1750-3841.16126
https://doi.org/10.1016/j.foodchem.2018.12.068
https://doi.org/10.3390/agriculture11111089
https://doi.org/10.1094/CCHEM-08-13-0157-R

Prager, A., Munz, S., Nkebiwe, P. M., Mast, B., and Graeff-Honninger, S.
(2018). Yield and quality characteristics of different quinoa (Chenopodium
quinoa Willd.) cultivars grown under field conditions in southwestern
Germany. Agronomy 8, 197. doi: 10.3390/agronomy8100197

Pramitha, L. J., Rana, S., Aggarwal, P. R., Ravikesavan, R., Joel, J. A., &
Muthamilarasan, M. (2021). Diverse role of phytic acid in plants and
approaches to develop low-phytate grains to enhance bioavailability of
micronutrients. In D. Kumar (Ed.), Advances in Genetics (pp. 89-120). doi:
10.1016/bs.adgen.2020.11.003

Prego, I., Maldonado, S., Otegu, M. (1998). Seed structure and localization of
reserves in Chenopodium quinoa. Annals of Botany 82:481-488

Pulvento, C., Riccardi, M., Lavini, A., lafelice, G., and Marconi, E. and
D andria, R. (2012). Yield and quality characteristics of quinoa grown in open
field under different saline and non-saline irrigation regimes. J. Agron. Crop
Sci. 198, 254-263. doi: 10.1111/j.1439-037X.2012.00509.x

Rabaan, A. A., Alhumaid, S., Albayat, H., Alsaeed, M., Alofi, F. S., Al-
Howaidi, M. H., Turkistani, S. A., Alhajri, S. M., Alahmed, H. E., Alzahrani,
A. B., Mashragi, M. M., Alwarthan, S., Alhajri, M., Alshahrani, F. S.,
Almuthree, S. A., Alsubki, R. A., Abuzaid, A. A., Alfaresi, M., Al-Fares, M.
A., & Mutair, A. Al (2022). Promising antimycobacterial activities of
flavonoids against Mycobacterium sp. drug targets: a comprehensive review.
Molecules, 27, 5335. https://doi.org/10.3390/molecules27165335

Rahut, D. B., Aryal, J. P., Manchanda, N., and Sonobe, T. (2022). Expectations
for household food security in the coming decades: A global scenario, in Future
Foods. Global Trends, Opportunities, and Sustainability Challenges, ed. R.
Bhat. (London: Academic Press), 107-131.

Raney, J. A, Reynolds, D. J., Elzinga, D. B., Page, J., A. Udall, J., Jellen, E.
N., Bonifacio, A., Fairbanks, D. J., & Maughan, P. J. (2014). Transcriptome
analysis of drought-induced stress in Chenopodium quinoa. Am. J. Plant Sci.,
5:338-357. https://doi.org/10.4236/ajps.2014.53047

Reguera, M., Conesa, C. M., Gil-Gomez, A., Haros, C. M., Perez-Casa, M. A.,
Briones-Labarca, V., et al. (2018). The impact of different agroecological
conditions on the nutritional composition of quinoa seeds. PEERJ 6, e4442.
doi: 10.7717/peerj.4442

Repo-Carrasco, R., Espinoza, C., and Jacobsen, S. E. (2003). Nutritional value
and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa
(Chenopodium pallidicaule). Food Rev. Int. 19, 179-189. doi: 10.1081/FRI-
120018884

Rizzello, C. G., Lorusso, A., Montemurro, M., and Gobbetti, M. (2016). Use of
sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous
selected lactic acid bacteria for enhancing the nutritional, textural, and sensory

65


https://doi.org/10.3390/agronomy8100197
https://doi.org/10.1016/bs.adgen.2020.11.003
https://doi.org/10.1111/j.1439-037X.2012.00509.x
https://doi.org/10.3390/molecules27165335
https://doi.org/10.4236/ajps.2014.53047
https://doi.org/10.7717/peerj.4442
https://doi.org/10.1081/FRI-120018884
https://doi.org/10.1081/FRI-120018884

features of white bread. Food Microbiol. 56, 1-13. doi:
10.1016/j.fm.2015.11.018

Rojas, W. (2003). Multivariate analysis of genetic diversity of Bolivian quinoa
germplasm. Food Rev. Int. 19, 9-23. doi: 10.1081/FR1-120018864

Rojas, W., Milton, P., Alanoca, C., Gémez Pando, L., Leonlobos, P., Alercia,
A, etal. (2015). Quinoa genetic resources and ex-situ conservation, in State of
the Art Report on Quinoa Around the World in 2013, eds. D. Bazile, D. Bertero
and C. Nieto (Rome: FAO/CIRADE), 56-82.

Royal Botanic Gardens Kew. (n.d.). The Herbarium Catalogue. Available from
https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:165175-1
Accessed 03. 04. 2024

Ruales, J., and Nair, B. M. (1992). Nutritional quality of the protein in quinoa
(Chenopodium quinoa Willd.) seeds. Plant Foods Hum. Nutr. 42, 1-11. doi:
10.1007/BF02196067

Ruiz, K. B., Aloisi, I., Del Duca, S., Canelo, V., Torrigiani, P., Silva, H., et al.
(2016). Salares versus coastal ecotypes of quinoa: salinity responses in Chilean
landraces from contrasting habitats. Plant Physiol. Biochem. 101, 1-13. doi:
10.1016/j.plaphy.2016.01.010

Ruiz, K. B., Biondi, S., Oses, R., Acuna-Rodriguez, I. S., Antognoni, F.,
Martinez-Mosqueira, E. A., etal. (2014). Quinoa biodiversity and sustainability
for food security under climate change. A review. Agron. Sust. Dev. 34, 349—
359. doi: 10.1007/s13593-013-0195-0

Saad-Allah, K. M., and Youssef, M. S. (2018). Phytochemical and genetic
characterization of five quinoa (Chenopodium quinoa Willd.) genotypes
introduced to Egypt. Physiol. Mol. Biol. Plants 24, 617-629. doi:
10.1007/s12298-018-0541-4

Salgado, N., Silva, M. A., Figueira, M. E., Costa, H. S., & Albuquerque, T. G.
(2023). Oxalate in foods: extraction conditions, analytical methods, occurrence,
and health implications. Foods 12, 3201. doi: 10.3390/foods12173201

Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional
factors and their reduction strategies: an overview. FPPN. 2, 6. doi:
10.1186/s43014-020-0020-5

Sanchez-Resendiz, A. |., Escalante-Aburto, A., Andia-Ayme, V., and Chuck-
Hernandez, C. (2019). Structural properties, functional evaluation, and in vitro
protein digestibility of black and yellow quinoa (Chenopodium petiolare)
protein isolates. Cyta-J. Food 17, 864-872. doi:
10.1080/19476337.2019.1669714

Schlick, G., and Bubenheim, D. L. (1996). Quinoa: candidate crop for NASA's
controlled ecological life support systems, in Progress in New Crops, ed. J.
Janick (Arlington: ASHS Press), 632-640.

66


https://doi.org/10.1016/j.fm.2015.11.018
https://doi.org/10.1081/FRI-120018864
https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:165175-1
https://doi.org/10.1007/BF02196067
https://doi.org/10.1016/j.plaphy.2016.01.010
https://doi.org/10.1007/s13593-013-0195-0
https://doi.org/10.1007/s12298-018-0541-4
https://doi.org/10.3390/foods12173201
https://doi.org/10.1186/s43014-020-0020-5
https://doi.org/10.1080/19476337.2019.1669714

Schmidt, D., Verruma-Bernardi, M. R., Forti, V. A., and Borges, M. (2021).
Quinoa and amaranth as functional foods: a review. Food Rev. Int. 37, 1-20.
doi: 10.1080/87559129.2021.1950175

Shamsudin, N. F., Ahmed, Q. U., Mahmood, S., Shah, S. A. A,, Khatib, A.,
Mukhtar, S., Alsharif, M. A., Parveen, H., & Zakaria, Z. A. (2022).
Antibacterial effects of flavonoids and their structure-activity relationship
study: a comparative interpretation. Molecules, 27, 1149. doi:
10.3390/molecules27041149

Sharma, K., Kaur, R., Kumar, S., Saini, R. K., Sharma, S., Pawde, S. V., &
Kumar, V. (2023). Saponins: A concise review on food-related aspects,
applications, and health implications. Food Chem. Adv. 2. doi:
10.1016/j.focha.2023.100191

Shen, Y. B., Zheng, L. Y., Peng, Y., Zhu, X. C., Liu, F., Yang, X. Q., et al.
(2022). Physicochemical, antioxidant, and anticancer characteristics of seed oil
from three Chenopodium quinoa genotypes. Molecules 27, 2453. doi:
10.3390/molecules27082453

Shi, D., Fidelis, M., Ren, Y., Stone, A. K., Ai, Y., Nickerson, M. T., et al.
(2020). The functional attributes of Peruvian (Kankolla and Blanca juli blend)
and Northern quinoa (NQ94PT) flours and protein isolates, and their protein
quality. Food Res. Int. 128, 108799. doi: 10.1016/j.foodres.2019.108799

Silva, V. M., Putti, F. F., White, P. J., & Reis, A. R. dos. (2021). Phytic acid
accumulation in plants: Biosynthesis pathway regulation and role in human
diet. Plant Physiol. Biochem. 164, 132—146. doi: 10.1016/j.plaphy.2021.04.035

Simopoulos, A. P. (2002). The importance of the ratio of Omega-6/0Omega-3
essential fatty acids. Biomed. Pharmacother. 56, 365-379. doi: 10.1016/S0753-
3322(02)00253-6

Singh, M. P., Soni, K., Bhamra, R., and Mittal, R. K. (2022). Superfood: value
and need. Curr. Nutr. Food Sci. 18, 65-68. doi:
10.2174/1573401317666210420123013

Sobota, A., Swieca, M., Gesinski, K., Wirkijowska, A., and Bochnak, J. (2020).
Yellow-coated quinoa (Chenopodium quinoa Willd) — physicochemical,
nutritional, and antioxidant properties. J. Sci. Food Agri. 100, 2035-2042. doi:
10.1002/jsfa.10222

Steffolani, M. E., Villacorta, P., Morales-Soriano, E. R., Repo-Carrasco, R.,
Leon, A. E., Perez, G. T., et al. (2016). Physicochemical and functional
characterization of protein isolated from different quinoa varieties
(Chenopodium quinoa Willd). Cereal Chem. 93, 275-281. doi:
10.1094/CCHEM-04-15-0083-R

Sun, Y., Liu, F., Bendevis, M., Shabala, S., and Jacobsen, S. E. (2014).
Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive
drought stress. J. Agron. Crop Sci. 200, 12-23. doi: 10.1111/jac.12042

67


https://doi.org/10.1080/87559129.2021.1950175
https://doi.org/10.3390/molecules27041149
https://doi.org/10.1016/j.focha.2023.100191
https://doi.org/10.3390/molecules27082453
https://doi.org/10.1016/j.foodres.2019.108799
https://doi.org/10.1016/j.plaphy.2021.04.035
https://doi.org/10.1016/S0753-3322(02)00253-6
https://doi.org/10.1016/S0753-3322(02)00253-6
https://doi.org/10.2174/1573401317666210420123013
https://doi.org/10.1002/jsfa.10222
https://doi.org/10.1094/CCHEM-04-15-0083-R
https://doi.org/10.1111/jac.12042

Taaime, N., El Mejahed, K., Moussafir, M., Bouabid, R., Oukarroum, A.,
Choukr- Allah, R., etal. (2022). Early sowing of quinoa cultivars, benefits from
the rainy season and enhances quinoa development, growth, and yield under
the arid conditions in Morocco. Sustainability 14, 4010. doi:
10.3390/su14074010

Tabatabaei, I., Alseekh, S., Shahid, M., Leniak, E., Wagner, M., Mahmoudi,
H., et al. (2022). The diversity of quinoa morphological traits and seed
metabolic composition. Sci. Data 9, 1-7. doi: 10.1038/s41597-022-01399-y

Tang, Y., Li, X,, Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., Marcone,
M. F., Liu, R., & Tsao, R. (2015a). Characterization of fatty acid, carotenoid,
tocopherol/tocotrienol compositions and antioxidant activities in seeds of three
Chenopodium quinoa Willd. genotypes. Food Chem. 174, 502-508.
https://doi.org/10.1016/j.foodchem.2014.11.040

Tang, Y., Li, X., Zhang, B., Chen, P. X,, Liu, R., & Tsao, R. (2015b).
Characterization of phenolics, betanins, and antioxidant activities in seeds of
three Chenopodium quinoa Willd. genotypes. Food Chem. 166, 380-388.
https://doi.org/10.1016/j.foodchem.2014.06.018

Tang, Y., Li, X., Chen, P. X,, Zhang, B., Liu, R., Hernandez, M., Draves, J.,
Marcone, M. F., & Tsao, R. (2016a). Assessing the fatty acid, carotenoid, and
tocopherol compositions of amaranth and quinoa seeds grown in Ontario and
their overall contribution to nutritional quality. J. Agric. Food Chem. 64, 1103-
1110. https://doi.org/10.1021/acs.jafc.5b05414

Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., & Tsao, R. (2016b).
Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic
treatments and their antioxidant and a-glucosidase and pancreatic lipase
inhibitory effects. J. Agric. Food Chem. 64, 1712-1719.
https://doi.org/10.1021/acs.jafc.5b05761

Tang, Y., & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains
and their antioxidant, anti-inflammatory, and potential health beneficial effects:
a review. Mol. Nutr. Food Res. 61, 1600767.
https://doi.org/10.1002/mnfr.201600767

Thiam, E., Allaoui, A., and Benlhabib, O. (2021). Quinoa productivity and
stability evaluation through varietal and environmental interaction. Plants 10,
714. doi: 10.3390/plants10040714

Toderich, K. N., Mamadrahimov, A. A., Khaitov, B. B., Karimov, A. A,
Soliev,A. A., Nanduri, K. R., et al. (2020). Differential impact of salinity stress
on seeds minerals, storage proteins, fatty acids, and squalene composition of
new quinoa genotype, grown in hyper-arid desert environments. Front. Plant
Sci. 11, 607102. doi: 10.3389/fpls.2020.607102

Toubali, S., Ait-EI-Mokhtar, M., Boutasknit, A., Anli, M., Ait-Rahou, Y.,
Benaffari, W., Ben-Ahmed, H., Mitsui, T., Baslam, M., Meddich, A. (2022).
Root reinforcement improved performance, productivity, and grain bioactive

68


https://doi.org/10.3390/su14074010
https://doi.org/10.1038/s41597-022-01399-y
https://doi.org/10.1016/j.foodchem.2014.11.040
https://doi.org/10.1016/j.foodchem.2014.06.018
https://doi.org/10.1021/acs.jafc.5b05414
https://doi.org/10.1021/acs.jafc.5b05761
https://doi.org/10.1002/mnfr.201600767
https://doi.org/10.3390/plants10040714
https://doi.org/10.3389/fpls.2020.607102

quality of field-droughted quinoa (Chenopodium quinoa). Frontiers in Plant
Science 13:860484. doi: 10.3389/fpls.2022.860484

Tovar, J. C., Quillatupa, C., Callen, S. T., Castillo, S. E., Pearson, P., Shamin,
A, et al. (2020). Heating quinoa shoots results in yield loss by inhibiting fruit
production and delaying maturity. Plant J. 102, 1058-1073. doi:
10.1111/tpj.14699

Tschopp, M., Bieri, S., and Rist, S. (2018). Quinoa and production rules: how
are cooperatives contributing to the governance of natural resources? In. J.
Commons 12, 402—427. doi: 10.18352/ijc.826

USDA (2020). U.S. Department of Agriculture Agricultural Research Service.
Food Data Central. Available Online at: https://fdc.nal.usda.gov/ (accessed July
7, 2022).

Vera, E. P., Alca, J. J., Saravia, G. R., Campioni, N. C., and Alpuy, I. J. (2019).
Comparison of the lipid profile and tocopherol content of four Peruvian quinoa
(Chenopodium quinoa Willd.) cultivars (Amarilla de Maranga’, ‘Blanca de
Juli’, "INIA 415" 'Roja Pasankalla’, "INIA 420°, ‘Negra Collana”) during
germination. J. Cereal Sci. 88, 132-137. doi: 10.1016/j.jcs.2019.05.015

Vega-Galvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martinez,
E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium
quinoa Willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 90,
2541-2547. https://doi.org/10.1002/jsfa.4158

Vidueiros, S. M., Curti, R. N., Dyner, L. M., Binaghi, M. J., Peterson, G.,
Bertero, H. D., etal. (2015). Diversity and interrelationships in nutritional traits
in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina.
J. Cereal Sci. 62, 87-93. doi: 10.1016/j.jcs.2015.01.001

Villacrés, E., Quelal, M., Galarza, S., Iza, D., and Silva, E. (2022). Nutritional
value and bioactive compounds of leaves and grains from quinoa
(Chenopodium quinoa Willd). Plants 11, 213. doi: 10.3390/plants110 20213

Walters, H., Carpenter-Boggs, L., Desta, K., Yan, L., Matanguihan, J., Murphy,
K., et al. (2016). Effect of irrigation, intercrop, and cultivar on agronomic and
nutritional characteristics of quinoa. Agroecol. Sust. Food Syst. 40, 783-803.
doi: 10.1080/21683565.2016.1177805

Wang, N., Wang, F. X., Shock, C. C., Meng, C. B., and Qiao, L. F. (2020).
Effects of management practices on quinoa growth, seed yield, and quality.
Agronomy 10, 445. doi: 10.3390/agronomy10030445

WHO/FAO/UNU (2007). Protein and amino acid requirements in human
nutrition report of a joint WHO/FAO/UNU expert consultation (Geneva: World
Health Organization).

Wu, G. Y., Peterson, A. J., Morris, C. F., and Murphy, K. M. (2016). Quinoa
seed quality response to sodium chloride and sodium sulfate salinity. Front.
Plant Sci. 7, 790. doi: 10.3389/fpls.2016.00790

69


https://doi.org/10.3389/fpls.2022.860484
https://doi.org/10.1111/tpj.14699
https://doi.org/10.18352/ijc.826
https://fdc.nal.usda.gov/
https://doi.org/10.1016/j.jcs.2019.05.015
https://doi.org/10.1002/jsfa.4158
https://doi.org/10.1016/j.jcs.2015.01.001
https://www.mdpi.com/2223-7747/11/2/213
https://doi.org/10.1080/21683565.2016.1177805
https://doi.org/10.3390/agronomy10030445
https://doi.org/10.3389/fpls.2016.00790

Wuy, L. G, Wang, A. N,, Shen, R. L., and Qu, L. B. (2020). Effect of processing
on the contents of amino acids and fatty acids, and glucose release from the
starch of quinoa. Food Sci. Nutr. 8, 4877-4887. doi: 10.1002/fsn 3.1775

Yang, X. S., Qin, P. Y., Guo, H. M., and Ren, G. X. (2019). Quinoa industry
development in China. Ciencia E Invest. Agraria 46, 208-219. doi:
10.7764/rcia.v46i2.2157

Zaynab, M., Sharif, Y., Abbas, S., Afzal, M. Z., Qasim, M., Khalofah, A.,
Ansari, M. J., Khan, K. A,, Tao, L., & Li, S. (2021). Saponin toxicity as key
player in plant defense against pathogens. Toxicon, 193, 21-27. doi:
10.1016/j.toxicon.2021.01.009

Zhou, X., Yue, T., Wei, Z., Yang, L., Zhang, L., & Wu, B. (2023). Evaluation
of nutritional value, bioactivity, and mineral content of quinoa bran in China
and its potential use in the food industry. Curr. Res. Food Sci. 7. doi:
10.1016/j.crfs.2023.100562

70


https://doi.org/10.1002/fsn3.1775
https://doi.org/10.7764/rcia.v46i2.2157
https://doi.org/10.1016/j.toxicon.2021.01.009
https://doi.org/10.1016/j.crfs.2023.100562

3. Nutritional and phenotypic evaluation of
quinoa genetic resources grown in the climatic
conditions of the Czech Republic

Adapted from: Dostalikova, L., Hlasna Cepkova, P., Janovska, D., Svoboda,
P., Jagr, M., Dvofacek, V., Viehmannova, I. (2023). Nutritional evaluation of
quinoa genetic resources growing in the climatic conditions of Central Europe.
Foods 12:1440. https://doi.org/10.3390/foods12071440

(Original research paper)

CRediT author statement: Author LD: Investigation, Methodology, Writing
— original draft preparation; Author PHC: Conceptualization, Methodology,
Formal analysis, Investigation, Writing — review and editing; Author DJ:
Conceptualization, Resources, Writing — review and editing; Author PS: Data
curation, Visualization; Author MJ: Methodology, Validation, Data Curation;
Author VD: Resources, Validation; Author VI: Writing — review and editing.

71


https://doi.org/10.3390/foods12071440

Abstract

Quinoa displays huge genetic variability and adaptability to distinct climatic
conditions. Quinoa seeds are a good source of nutrients; however, the overall
nutritional composition and nutrient content are influenced by numerous
factors. This study focused on the nutritional and morphologic evaluation of
various guinoa genotypes grown in the Czech Republic. Significant differences
between years were observed for morphological traits (plant height,
inflorescence length, weight of thousand seeds). The weather conditions in the
year 2018 were favorable for all the morphological traits. The protein content
of quinoa accessions ranged between 13.44 and 20.01% and it was positively
correlated to mauritianin. Total phenolic content varied greatly from year to
year, while the antioxidant activity remained relatively stable. The most
abundant phenolic compounds were the flavonoids miquelianin, rutin, and
isoguercetin. Isoquercetin, quercetin, and N-feruloyl octopamine showed the
highest stability under variable weather conditions in the analyzed years. A total
of six compounds were detected and quantified in quinoa for the first time. Most
varieties performed well under Central European conditions and can be
considered a good source of nutrients and bioactive compounds. These data can
be used as a source of information for plant breeders aiming to improve the
quality traits of quinoa.
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3.1. Introduction

Quinoa is a pseudocereal from the Amaranthaceae family, with its origin
located around Lake Titicaca, lying on the border of Peru and Bolivia. Thanks
to its long-term domestication and the various farming activities of ancient
societies living in the Andean range [1], quinoa today displays a huge genetic
variability. This allows quinoa to adapt to different abiotic stresses [2,3] and
opens the possibility of cultivation in relatively distinct climatic conditions
worldwide [4].

Thanks to its resilience, quinoa can be sustainably produced in marginal
environments, which is a crucial trait, because salinization and aridity are
predicted to increase in most parts of the world. It is estimated that climate
change will negatively impact food safety in low-income countries relying
primarily on agriculture and with limited inputs. Therefore, quinoa might be,
together with other indigenous foods, a significant tool in fighting against
hunger and malnutrition [5].

Quinoa seeds and leaves are consumed in the form of traditional and novel food
products and beverages [6]. Thanks to the presence of valuable nutrients,
quinoa can be used for the improvement of the nutritional profile of gluten-free
products [7]. Quinoa contains a good amount of minerals and vitamins, together
with a relatively high amount of nutritionally valuable oil, with a predominance
of health-beneficial polyunsaturated fatty acids [8]. Thanks to its exceptional
features and characteristics, quinoa starch has interesting physiochemical
properties, allowing its potential use in a broad spectrum of food products.
Quinoa is further prized for its relatively high seed protein content, with the
presence of all essential amino acids [9,10]. In addition to the primary
metabolites, quinoa contains numerous secondary metabolites, divided into five
groups: phenolic acids, flavonoids, terpenoids, steroids, and nitrogen-
containing metabolites. The majority of them are biologically active,
possessing, for example, anticancer [11,12], immunoregulative [13,14],
antimicrobial [15], and anti-inflammatory properties [16,17]

On the other hand, the reported nutritional composition and nutrient content of
quinoa is highly variable throughout the literature. Besides the effect of
genotype, the nutrient content and composition of quinoa were previously
reported to be influenced by agroecological conditions [18—20], as well as the
metabolomic and morphological characteristics of the plant itself [21].

It is necessary to broaden the current knowledge of quinoa, by analyzing and
evaluating the wide range of quinoa genetic resources, which will serve as a
great source of information about which quinoa genotypes have the potential to
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be cultivated intensively and which should be improved. This study evaluated
an extensive collection of 41 quinoa genotypes grown for 4 consecutive years
(2018-2021) under the climatic conditions of the Czech Republic. The main
aim was to characterize the chemical and nutritional compositions, together
with the agro-morphological traits, of selected varieties with the best
performance under Central European climatic conditions. The data obtained
will provide necessary and detailed information for further quinoa breeding
purposes.

3.2.  Materials and methods

3.2.1. Plant material

A total of 41 quinoa accessions were subjected to analysis. All the accessions
were provided by the U.S. National Plant Germplasm System operated by
USDA. During consecutive years 2018-2021, the genotypes were sown on the
experimental fields of the Crop Research Institute in Prague—Ruzyn¢, Czech
Republic. All accessions were sown in two rows 1 m in length, 25 cm apart,
and with 50 seeds per row. In each studied year, the original samples provided
by the National Plant Germplasm System were sown. Sowing was conducted
in alignment with the prevailing weather conditions specific to each year,
typically occurring between the second half of May and the beginning of June.

No pesticide or fungal control was applied. The morphological characteristics

of the plants were evaluated according to the descriptors for quinoa and wild
relatives [31]. The plant height and inflorescence length measurements were
performed in 5 randomly selected plants in each genotype. Seeds were
harvested at full maturity. The seeds were dried, cleaned, and stored for further
analysis.

3.2.2. Weather conditions

Figure 3.1 describes the weather conditions during four consecutive years
2018-2021. The meteorological data were gathered from the
agrometeorological station at Crop Research Institute, Prague—Ruzyné, Czech
Republic. In general, there were variable weather conditions during the
analyzed years. The year 2018 showed extremely hot weather during the first
half of the growing season; however, in the second half, the mean temperature
was the lowest compared to all analyzed years and the 30-year average. This
year was also the driest, because the precipitation rate was lower than the 30-
year average (1981-2010) during all months, except for June. Extremely dry
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conditions were observed during May and July 2018. The years 2019 and 2020
had relatively similar temperature patterns, except for June, when the
temperature was significantly higher in 2019.

In terms of rainfall, the average precipitation rate was quite variable in both
years. Relatively abundant rainfall occurred in June, August, and October 2020,
whereas May and July were drier, with precipitation rates lower than the 30-
year average. In 2019, there was relatively high precipitation during September,
but the other months reached values that were comparable to or lower than the
30-year average. Overall, the year 2019 can be considered the warmest of all
studied years and drier compared to 2020. In terms of mean temperature, the
year 2021 was more or less comparable to what was seen in 2019 and 2020,
except for June and August. In contrast, the precipitation rate showed several
extremes in 2021. The most abundant rainfall occurred during May and
September, whereas a low amount of rainfall was observed in August and
October. The precipitation rate of the two resting months (June and July) was
comparable to the 30-year average.

Meteo data Prague - CZE
120.0 25.0

Rainfalls (mm)
Temperature (°C)

March April May June July August  September October
m Rainfalls - 2018 mmmm Rainfalls - 2019
m Rainfalls - 2020 = Rainfalls - 2021
I Rainfalls - Average (1981 - 2010)
-—@-=Temperature - 2018 ~@-=Temperature - 2019
Temperature - 2020 Temperature - 2021

-—@==Temperature - Average (1981 - 2010)

Figure 3.1 Weather conditions in 2018-2021 in Prague, Czech Republic

3.2.3. Chemicals

Standards of the phenolic compounds 2-OH cinnamic acid, 4-OH
benzaldehyde, apigenin, caffeic acid, catechin, chlorogenic acid, emodin,
epicatechin, gallic acid, genistein, glycitein, hesperidin, homoorientin,
isoquercetin, isovitexin, isorhamnetin, kaempferol, luteolin, n-feruloyl
octopamine, naringenin, neochlorogenic acid, mauritianin, miquelianin,
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orientin, p-coumaric acid, pinocembrin, quercetin, quercitrin, rhamnetin, rutin,
salicylic acid, taxifolin, umbelliferone, vitexin, and the internal standard
probenecid and verapamil hydrochloride were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Methanol (LC-MS grade, >99.9%) was obtained from
Riedel de Haén (Seelze, Germany). Formic acid (LC-MS grade, 99%) was
purchased from VWR (Leuven, Belgium). Pure water was attained from a
Milli-Q purification system (Millipore, Bedford, MA, USA).

3.2.4. Sample and standard preparation

To prepare reference stock solutions, reference standards of each phenolic
compound were dissolved in methanol, to obtain stock solutions of 0.5 mg/mL.
The reference stock solutions were stored at —18°C. The calibration curves for
the phenolic compound quantification were prepared by dilution of stocks, with
a methanol concentration range of 0.001-2.000 pg/mL. Furthermore,
probenecid and verapamil were dissolved in methanol at 0.5 mg/mL, to prepare
a stock solution of the internal standard. Internal standards were then added to
the individual reference standard solutions or test samples, to a final
concentration of 0.1 pg/mL.

The seeds of quinoa were milled with an IKA A1l basic mill (IKA-Werke,
Staufen, Germany), and the flour was stored in a dark cold place (4°C) in well-
sealed plastic bags. For the mass spectrometric analysis, the extraction of seed
samples was based on the method described by Janovska et al. [22]. Briefly,
0.1 g of the whole meal flour was extracted twice with 1 mL of extraction
solvent (80% methanol with probenecid and verapamil as internal standards at
a concentration of 0.1 ug/mL) in Eppendorf tubes for 60 min at 45°C and using
an ultrasonic bath. Samples were then centrifuged for 10 min at 13,500 rpm.
Obtained supernatants from each sample were filtered through 0.2 pm nylon
syringe filters (Thermo Scientific, Rockwood, TN, USA). Extracts were
prepared a maximum of 2 days before the UHPLC-ESI-MS/MS analysis and
stored at —18°C.

3.2.5. UHPLC-ESI-MS/MS instrumentation

The chromatographic system (Dionex UltiMate 3000 UHPLC system, Dionex
Softron GmbH, Germering, Germany) consisted of a binary pump (HPG-
3400RS), an autosampler (WPS-3000RS), a degasser (SRD-3400), and a
column oven (TCC-3000RS). Detection was carried out on a quadrupole/orbital
ion trap Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose,
CA, USA). Analytes were separated on a reversed-phase Ascentis Express C18
column (2.1 mm x 100 mm, 2.7 pm) from Supelco (Bellefonte, PA, USA). The
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LC-MS system was equipped with a heated electrospray ionization source
(HESI-II) and Xcalibur software, version 4.0 (Thermo Fisher Scientific, San
Jose, CA, USA).

3.2.6. UHPLC-ESI-MS/MS analysis

Chromatographic separation was carried out using gradient elution, with 0.2%
formic acid (v/v) in water as solvent A and methanol with 0.2% formic acid
(v/v) as solvent B. The LC gradient started with 99% of solvent A + 1% of
solvent B; followed by gradient elution to 40% A + 60% B at 11 min. The
column was eluted with 100% of solvent B for 2 min. Equilibration was
achieved by washing the column with 99% A + 1% B for 2 min. The total
analysis took 15 min. The column was maintained at 40 -C at a flow rate of
0.35 mL/min. The injection volume was 1 pL.

The mass spectrometer analysis was run in negative ESI mode. The spray
voltage was maintained at —2.5 kV. The sheath gas flow rate was 49 arbitrary
units, the auxiliary gas flow rate was 12 arbitrary units, and the sweep gas flow
rate was 2 arbitrary units. The capillary temperature was 260°C. Nitrogen was
used as the sheath, auxiliary, and sweep gas. The heater temperature was
maintained at 419°C. The S-lens RF level was 30. The precursor ions in the
inclusion list were isolated within the retention time window of + 60 s, filtered
in the quadrupole at the isolation window (target m/z + 0.8 m/z), and
fragmented in an HCD collision cell C-trap at a resolution of 17,500 FWHM
(full width at half maximum) resolution, an AGC target value of 1 x 106, and
a maximum injection time of 50 ms.

The normalized collision energy (NCE) was optimized for each compound. The
precursor and daughter ions monitored, retention times, and NCE values are
shown in Table S1. The precision and calibration of the Q Exactive Orbitrap
LC/MS/MS instrument were examined using a reference standard mixture
obtained from Thermo Fisher Scientific. The measurements were performed in
three replicates. Data were evaluated with Quan/Qual Browser Xcalibur
software, version 4.0.

3.2.7. Determination of the phenolic compound concentration in quinoa
samples

Identification of phenolic compounds in quinoa samples was based on their
retention times relative to the authentic standards and mass spectral data
(accurate mass determination generating elemental composition and
fragmentation patterns of a molecular ion) obtained through LC-MS/MS, most
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were compared with those described in our previous studies [22]. Calibration
curves were constructed by plotting the peak area (adjusted with probenecid
and verapamil as internal standards) versus the concentration of the relevant
reference standards.

3.2.8. Chemical analyses

The dry weight (DW) content of seed samples (5 g) was further dried in an
electric hot-air drier at 105°C for 4 h, according to the standard method [23].
The content of crude protein from each sample was determined using the classic
Kjeldahl mineralization method and calculated with a conversion factor of 6.25
[24]. The protein content measurements were performed in two replicates. The
results were expressed as % in DW. Total phenolic content (TPC) was
determined using the Folin—Ciocalteau reagent according to HolaSova et al.
[25] with slight modifications. The results of the TPC analysis were expressed
in grams of gallic acid equivalent (GAE) per kilogram of sample dry weight
(DW) (GAE g/kg DW). The antioxidant activity (AA) of the samples was
determined using a DPPH assay [26]. The results of the DPPH assay were
expressed in millimoles of Trolox equivalent (TE) per gram of sample dry
weight (DW) (umol TE/g DW).

3.2.9. Statistical analyses

Selected morphological descriptors for the whole collection of 41 genotypes
were measured in 3 biological replicates. Statistical analysis was performed in
the R program (R Development Core Team 2020) and Microsoft Office Excel
v. 2016. A two-way analysis of variance (ANOVA2) was applied to the data,
to test whether there was a significant effect of year and genotypes on the
evaluated traits. To compare each accession concerning each descriptor, the
means and the standard deviations for each descriptor were calculated
separately for each accession and year of observation. Boxplots were also
generated, to compare the distribution of values for a set of 22 descriptors
between individual years of observation. Years with significantly different
means were determined with a Tukey HSD test. Spearman’s rank correlation
was also calculated for each pair of descriptors based on the mean values.

The correlation test function was applied to test whether the correlation
coefficient was significantly different from zero. Furthermore, a heatmap was
created for selected traits using the Complex Heatmap package, to display
differences between genotypes. Each genotype was color-coded from max (red)
to min (blue) based on the values of the respective descriptors in individual
years, and a boxplot showing the distribution of values across individual years
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and genotypes was plotted. Heatmaps were combined with a dendrogram based
on the average linkage clustering of the Euclidean distance dissimilarity matrix
of the values for the respective traits. Summarized data of the evaluated traits
and nutritive compounds (means and standard deviation) for the tested
genotypes in all years are presented in Table S2. To show the association among
samples, data for a set of 19 descriptors were used for the principal component
analysis (PCA). Before the PCA, the data were scaled, and missing values were
imputed using the missMDA package. The quality of representation of the
variables on the factor map was also calculated for the first two components
with the largest variance.

3.3.  Results and discussion

3.3.1. Weather conditions

The weather conditions during the four consecutive years 2018-2021 showed
several extremes in temperature and precipitation, mostly during the years 2018
and 2021 (Figure 3.1). The years 2019 and 2020 had relatively similar
characteristics; however, they both were different from the years 2018 and
2021. The effect of the environment on plant morphology and seed quality is
undebatable. As described previously, the growing conditions during the year
can significantly affect important quinoa traits, such as yield [27], fiber content
[19], protein and amino acid content [10,28], as well as metabolomic
composition [29,30].

3.3.2. Morphological evaluation

In this study, all genotypes were evaluated under field conditions using the
descriptors for quinoa Chenopodium quinoa Willd. and wild relatives [31]. The
selected descriptors were plant height (PH), inflorescence length (IL), and the
weight of thousand seeds (WTS). The mean PH value was the highest in 2018
(127.65 £ 13.77 cm) and the lowest in 2021 (97.88 +20.63 c¢cm). A statistically
significant difference between the years was only noticed in the year 2018;
other years had no significant differences. Statistical differences also existed
among genotypes (Figure 3.2).

The height of a plant is, among other factors, strongly influenced by genotype
[32]. This study detected maximum PH in the "Mint Vanilla” (167.67 + 3.68
cm) in 2018 (Figure 3.3). This genotype steadily obtained top PH values in
almost all studied years, except for 2019. A similar range of quinoa heights was
found in the scientific literature. Thiam et al. [33] reported the range of studied
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quinoa genotypes at 34.85-127.35 cm, while Tabatabei et al. [34] evaluated a
broader range (17.20-145.25 cm).

A relatively high and stable PH values among three studied years (2018, 2019,
and 2020) were noticed in genotype "‘QQ57 A’, with the mean PH at 114.58 +
25.83 cm. A very low variation in PH between years was described in genotypes
‘Tallin B” and "Faro’. The height of the plant was positively correlated to WTS
(0.25) (Figure 3.4). The PH is known to positively correlated to overall seed
yield and seed size [35,36].

The heritability of plant height (PH) reached up to 73%, highlighting its
significance as a trait for future selection of promising lines and yield
improvement [37]. Controlling plant height is particularly crucial for preserving
quinoa yield, as accessions with excessive height (>176.72 c¢cm) and long
panicles (>57.94 cm) often exhibit lower yields and smaller seed sizes [35].
Moreover, taller plants are more prone to lodging which leads to significant
yield losses [38]. Damage to crops, including lodging and associated
waterlogging, due to heavy rainfall and hailstorms has been identified as a risk
factor for agriculture in the Czech Republic [100], hence it is highly relevant
for this region to identify genotypes that can withstand such weather extremes.
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Figure 3.2 Distribution of values for a set of 22 morpho-phenological
parameters and chemical compounds observed for 41 quinoa genotypes grown
in the Czech Republic between 2018 and 2021

For each descriptor, the values recorded for each accession in a given year were used for the plot.
Boxplots show the distribution of values, with grey-shaded points representing outlier values.
Significant differences in means between years are denoted by the different letters (Tukey HSD)
above each boxplot. The abbreviations for the selected descriptors are as follows: plant height
(PH), inflorescence length (IL), protein content (PC), weight of thousand seeds (WTS),
antioxidant activity (AA), total polyphenols (TPC), 4-hydroxybenzaldehyde (C4B), caffeic acid
(CFA), p-coumaric acid (COA), N-feruloyl octopamine (NFO), mauritianin (MAU), miquelianin
(MI1Q), isoquercetin (IQCE), salicylic acid (SAC), rutin (RUT), quercetin (QCE), naringenin
(NAR), isorhamnetin (ISR), pinocembrin (PCB), gallic acid (GA), kaempferol (KMP), and
emodin (EMO).
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Figure 3.3 Diversity of 41 quinoa genotypes in terms of weight of thousand
seeds (WTS, (left)) and plant height (PH, (right)) values, illustrated using a
heatmap combined with a dendrogram based on average linkage clustering of
the Euclidean distance dissimilarity matrix

Values for the respective traits are displayed on a scale from blue (min) to red (max), according to
color key below each heatmap. Black rectangles indicate missing values foragiventraitinagiven
genotype. Years with significantly different means are denoted by the different letters (Tukey
HSD) above the individual columns of the respective heatmaps. Boxplots above each heatmap
show the distribution of values across all accessions in individual years, while the boxplots next
to each heatmap show the distribution across all years for individual accessions. The line
crossing the side boxplots marks the mean of all values.
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Figure 3.4 Spearman’s correlation between 22 descriptors for a collection of
41 quinoa genotypes

The circles above the diagonal indicate whether the correlation between the pair of descriptors
was negative (red) or positive (blue), while their size represents the magnitude of the
correlation, as indicated by the color key and the Spearman’s p values below the diagonal.
Significant correlations are denoted by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001),
respectively.

The abbreviations for the selected descriptors are as follows: plant height (PH), inflorescence
length (IL), protein content (PC), weight of thousand seeds (WTS), antioxidant activity (AA),
total polyphenols (TPC), 4-hydroxybenzaldehyde (C4B), caffeic acid (CFA), p-coumaric acid
(COA), N-feruloyl octopamine (NFO), mauritianin (MAU), miquelianin (MIQ), isoquercetin
(IQCE), salicylic acid (SAC), rutin (RUT), quercetin (QCE), naringenin (NAR), isorhamnetin
(ISR), pinocembrin (PCB), gallic acid (GA), kaempferol (KMP), and emodin (EMO).

Mean IL was the highest in 2018 (56.11 + 15.21 cm) and lowest in 2021 (18.51
+3.90 cm). The result of the Tukey HSD showed statistical differences between
the years, but there was no statistical significance between 2020 and 2021
(Figure 3.2). The longest inflorescence was recorded in the genotype "QQ57 A’
(99.67 £40.00 cm) in 2018; however, this genotype did not perform well in any
other year. A relatively low variability in this trait was detected in the genotype
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‘Dave 407B’. Tabatabaei et al. [34] reported similar values, ranging between
7.05-71.75 cm, in 468 quinoa accessions. Different ranges of inflorescence
length were observed in different environments: 36.90-120.70 cm [37] and
29.70-62.70 cm [39].

The year 2021 was not suitable for inflorescence development, since almost
50% of the cultivated genotypes had below-average values of panicle length
(less than 18.51 cm). The correlation analysis showed a relatively strong
positive association (0.62) with the height of the plant (Figure 3.4), which
agrees with other authors [35,39,40].

Regarding all four studied years, the WTS ranged between 0.90 g (genotype
‘QQ63" in 2021) and 2.74 g (genotype 'Cahuil B” in 2018). Significant
differences were detected between 2018 and 2019 and between genotypes
(Figure 3.3). Compared to several other experiments conducted in Europe, the
WTS values in this study were relatively low. For example, the WTS reported
in Poland, Belgium, Germany, Italy, and Spain ranged between 1.20 and 3.68
g [18,41]. The most favorable year for this trait was 2018 (mean WTS 1.80 +
0.32 g) (Figure 3.3). On the other hand, most genotypes had relatively low WTS
in 2021, except for "Cahuil A’, "Kcoito A’, 'Pl 433232°, "Pichaman’, "Tallin
B’, and "UDEC-2’, which had a higher WTS in this year compared to the other
three years.

Genotype "Cahuil B” showed above-average performance in WTS, with values
ranging between 1.87 and 2.74 g in all studied years. Several genotypes in this
paper showed relatively stable WTS values during all years of analysis ('Red
Head A’, and 'Red Head B"); however, the lowest variability was observed in
the genotype "QQ87" achieving approximately 1.80 g among all years of
analysis. As previously reported, the WTS contributes to overall quinoa yield
[33,41].

The overall genotype performance depends more or less on the genetic makeup,
environment, and their interactions [32,33]. A proper understanding of quinoa
germplasm and its adaptation to various environments is crucial for effective
breeding programs and cultivar development [42]. The favorable performance
of majority of quinoa genotypes in 2018 under conditions of high temperatures
and lower-than-average precipitation suggests that quinoa could be a valuable
alternative replacing drought-susceptible crops, since drought and heatwaves
were projected as one of the major threads for agriculture in Czech Republic
[100]. Quinoa might be also an ideal crop for drought-prone areas [43,44],
offering farmers a means to diversify their crop portfolio and mitigate risks
associated with water scarcity.
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On the other hand, the generally negative impact on morphological traits during
years 2020 and 2021 with excessive precipitation rate highlights challenges that
agriculture in Czech Republic, and thus in Central Europe, may face,
particularly in regions prone to heavy rain or poor soil drainage. Waterlogging
stress and related nutrient deficiencies [45,46], together with increased
incidence of fungal diseases in those wet years probably caused poor
performance of many quinoa genotypes involved in this study.

However, it is noteworthy that some genotypes in the study demonstrated stable
morphological traits across cultivation years and performed well even under
rainy conditions. Hence, these genotypes with broad weather tolerance should
be the focus of breeding objectives, aimed at developing quinoa cultivars suited
to the characteristic conditions of Central Europe.

3.3.3.  Crude protein content

Protein content (PC) fluctuated between 13.44 + 0.12% in DW (genotype
‘Pichaman” in 2021) and 20.01 + 0.17% in DW (genotype ‘Baer C" in 2019).
According to the Tukey HSD results, there were no significant differences
between the years 2018 and 2019, and between the years 2020 and 2021 (Figure
3.5). The values gathered in this study were similar to several other trials on
quinoa grown in Europe, such as those reported in Belgium (12.10-18.80% in
DW) [18] and Spain (13.20-20.40% in DW) [19,47], but higher than those
reported in Poland (12.40-15.98 ¢g/100 g in DW) [48] and Germany (11.90-
16.10% in DW) [41].

The highest mean PC was reported for the year 2019 (17.69 + 1.14%) (Figure
3.5). On the other hand, the lowest mean PC (15.79 + 1.19%) was analyzed in
2021. Overall, 56% of genotypes achieved the highest PC in 2019 and almost
37% of genotypes reached the highest PC in 2018. In comparison, only two
genotypes ("Cahuil B", "Cohamamba B") had the highest PC in 2021 and one
genotype in 2020 ("Isluga A"). Even though some genotypes had low mean PC
values, the amount of crude protein was still higher than in most cereals, such
as wheat (12%), oat (13%), and rice (7%) [49]. In addition to a balanced [50]
or 'nearly balanced” amino acid composition [10], quinoa is a great and
valuable source of protein for human nutrition.

The observed variation in PC can be explained by environment and/or
genotype-environment interactions. The year 2019 was characterized as the
warmest of all analyzed years. The precipitation rate in this year was the second
lowest of all studied years. Heat stress and slight water stress may enhance the
protein content in seeds [19], however, significant water stress can cause a
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decrease in the PC [51]. The high precipitation rate during 2020 and 2021 was
more harmful in our case. The effect of heavy rainfall and potential
waterlogging on protein content is not well documented in quinoa specifically;
however, research carried out on winter wheat and red clover concluded that
there was a decrease in protein content with high water levels [52-55].
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Figure 3.5 Diversity of the 41 quinoa genotypes in terms of protein content
(PC, (left)) and mauritianin content (MAU, (right)) values, illustrated using a
heatmap combined with a dendrogram based on average linkage clustering of
Euclidean distance dissimilarity matrix values for the respective traits,
displayed on a scale from blue (min) to red (max) according to the color key
below each heatmap.

Black rectangles indicate missing values for a given trait in a given genotype. Years with
significantly different means are denoted by the different letters (Tukey HSD) above the
individual columns of the respective heatmaps. Boxplots above each heatmap show the
distribution of values across all accessions in individual years, while the boxplots next to each

heatmap show the distribution across all years for individual accessions. The quality of the
representation of the variables is shown in the factor map.
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Despite the influence of the environmental conditions, several genotypes
exhibited consistently stable protein content. As with the morphological traits,
genotypes that maintain stable nutrient levels under changing weather
conditions are critical for breeding programs aimed at enhancing food security.
Specifically, the genotypes 'Mint Vanilla', 'Cahuil A', 'Cohamamba B’
'‘Braunschweig B', and 'Apelawa Al' demonstrated high stability in protein
content across the studied years (Figure 3.5).

A medium contribution to the amount of protein was noticed in IL (0.46)
(Figure 3.4). Contrarily, Granado-Rodriguez et al. [47] reported a negative
correlation between panicle size and protein content. Furthermore, protein
content was positively associated with mauritianin content (0.25). A negative
association was observed with emodin (—0.35) and gallic acid (—0.43) (Figure
3.4).

3.3.4. Total phenolic content

The TPC value ranged between 14.74 + 0.34 GAE mg/g in DW (genotype
'QQ101"in 2019) and 57.25 +£2.87 GAE mg/g in DW (genotype "Mint Vanilla’
in 2020). The Tukey HSD showed a significant difference between years;
however, the years 2018 and 2021 were not statistically different (Figure 3.2).
The analyzed range of TPC in this investigation was higher than that
determined previously. Generally, the TPC fluctuated between approximately
2 and 15 GAE mg/g in the DW in quinoa samples [56-58].

The highest mean TPC was recorded in the year 2020 (30.56 £ 9.20 GAE g/kg
DW). The majority of genotypes reached the highest TPC this year in
comparison to what was measured in the other years (Figure 3.2). The lowest
mean TPC was measured in the year 2019 (20.34 = 4.06 GAE g/kg DW). The
highest stability in TPC values was reported for the genotypes "‘Red Head B’,
"Apelawa A", “Isluga C’, and "P1433232°. The variety and origin of the sample
may significantly affect quinoa metabolomics and final polyphenol content
[59]. The observed variations in TPC could have been caused by the reaction
of the plant to abiotic stress [60,61]. As suggested by Toubali et al. [29],
drought stress decreases the TPC by up to 76%. Nonetheless, this conclusion
does not apply to our results, since the driest year was 2018, while the TPC for
this year was the second highest.

In this study, several factors contributed to the overall TPC. Correlation
analysis showed a weak or medium positive association between TPC and the
majority of the metabolites. The strongest contributors to TPC were emodin
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(0.43) and gallic acid (0.45) (Figure 3.4). TPC was also positively correlated
with AA; however, the association was medium (0.37).

3.3.5. Antioxidant activity

The highest mean AA (2.59 + 0.74 umol TE/g DW) was measured in 2021
(Figure 3.2) and the lowest mean AA was measured in 2020 (1.95 £ 0.48 umol
TE/g DW). Among all the accessions, the highest AA value was determined for
"Faro” (3.54 umol TE/g DW) in 2021 and the lowest for “Cahuil A" (0.28 pmol
TE/g DW) in 2018. The obtained results are difficult to compare with the
current scientific literature since the authors used a different method (e.g.,
FRAP, ABTS, FIC) and/or expression of the measured values.

In terms of trait stability, very similar values throughout the years were obtained
in genotypes "QQ056", 'QQ57B’, and "Isluga A’; nonetheless, all the genotypes
did not reach full maturity in 2021. The number of chemical components related
to antioxidant properties varies under different cultivation areas and depends
on the genotype-environment interactions [62,63]. In our case, the stress was
probably caused by the extreme precipitation rate during 2021 and the higher
incidence of fungal diseases. A weak or moderate positive association was
determined between AA and the majority of the analyzed metabolites. The
strongest contributor to AA was miquelianin  (0.37) and 4-
hydroxybenzaldehyde (0.31) (Figure 3.4).

3.3.6. Composition and content of phenolic compounds

A total of 34 metabolites were evaluated in this study. From this number, a total
of 13 compounds were detected in all analyzed genotypes, and 15 compounds
were detected in trace amounts and/or only in some genotypes. Six compounds
were not detected in any of the studied genotypes. To our knowledge, a total of
six compounds (2-OH-cinnamic acid, homoorientin, luteolin, naringenin, N-
feruloyl octopamine, and 4-OH-benzaldehyde) had never been identified or
quantified in quinoa before.

The chemical classes detected in this study were flavones (7 compounds),
phenolic acids (7 compounds), flavonols (6 compounds), and flavanols (3
compounds). In addition, groups of hydroxybenzaldehydes, flavans,
flavanones, anthraquinones, and methoxybenzaldehydes were detected in
quinoa, each represented by one compound.

The results of quantification showed that the most dominant compounds
throughout the analyzed years were mauritianin, miquelianin, rutin, and
isoquercetin. This was not in agreement with other sources, which considered
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quercetin and kaempferol as the two major flavonoids in quinoa [64—66]. The

rest of the analyzed compounds had a mean concentration lower than 2 pg/g
DW.

Mauritianin belongs to the group of flavonols. This compound has been well
described in the genus Astragalus [67,68], but in quinoa, this compound has
only been reported in two studies [69,70]. The potential health effects of this
compound have not been well described. Mauritianin was confirmed as highly
effective against Candida albicans [71]. Moreover, an antioxidative effect of
mauritianin against DPPH was observed [72]; however, this value was low in
comparison to other compounds in the study. The correlation analysis in this
study showed that mauritianin is not a very strong contributor to the AA.

Mauritianin had the highest mean content in 2019 (193.86 + 97.72 ng/g DW).
In this year, several extremely high values for this metabolite were observed in
the genotypes "Cohamamba B” (540.27 +52.78 pg/g DW), and "QQ87" (404.49
+11.68 ng/g DW); however, these extremes were not detected in any other year
(Figure 3.4). In contrast, the lowest mean concentration of this compound was
detected in 2020 (100.76 + 43.42 pg/g DW) (Figure 3.2). The results of
mauritianin content reported by Gomez-Caravaca et al. [70] are similar to those
measured in the year 2020 in this study. The specific role of mauritianin in
plants is not known; nevertheless, the results suggest that the weather
conditions in 2019 induced the synthesis of this compound. The genotype
‘Cohamamba B’ had an exceptionally high mauritianin content in all years,
apart from 2020, where data were not obtained (Figure 3.5).

Another abundant flavonol detected in this study was isoquercetin (also referred
to as isoquercitrin or quercetin 3-glucoside). The highest mean content of
isoquercetin was measured in 2018, with 9.10 = 10.23 ug/g DW (Figure 3.2).
This year also showed notably high values in a total of five genotypes. The
genotype ‘QQ056" had the best performance in this trait, attaining the highest
mean isoquercetin content regarding all four years of analysis. The lowest mean
isoquercetin content was measured in the year 2021 (2.93 + 2.44 ng/g DW). In
comparison to the available literature, the values measured in this study were
considerably higher [20,56].

In contrast to mauritianin, the isoguercetin values showed a relatively low
fluctuation throughout the analyzed years between the majority of the
genotypes. This suggests that isoquercetin in quinoa is less dependent on the
growing conditions in a given year. Nonetheless, geographical variability in the
content of this compound was reported in Cornus species [73] and Ceratonia
siliqua L. [74].
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Rutin (quercetin-3-rutinoside) was the next most abundant flavonol detected in
this study. In quinoa, it was observed to improve plant salinity tolerance
through K+ and Na+ regulation in leaf mesophyll [75]. The content of rutin
ranged between 0.88 + 0.03 pg/g DW (genotype “Isluga A") and 19.07 £ 0.61
ug/g DW (genotype "‘QQ056°), both measured in the year 2018. The lowest
mean rutin content was measured in 2021 (5.40 + 3.18 pug/g DW), but a very
similar value was also measured in 2020. Accumulation of rutin is impacted by
environmental conditions, especially by drought; however, this mechanism has
been described in other species but not in quinoa [76-78]. In this case, the
highest rutin content was observed in 2019 (8.21 £+ 3.50 pg/g DW) and the
lowest in 2021 (5.40 + 3.18 pg/g DW). Unlike the results from Pellegrini et al.
[56], the content of rutin in our quinoa accessions was lower. On the other hand,
similar values to this paper were described in the study of Antognoni et al. [63].

The mean content of the flavonol quercetin ranged between 0.31 + 0.24 pg/g
DW in 2021 and 0.878 + 1.16 pg/g DW in 2018 (Figure 3.2). An unusually
high value occurred in 2018 in genotype "Copacabana A’, reaching 6.48 £ 0.21
png/g DW. This tendency was also recognized in other years, except for 2021,
where this genotype had an average content of quercetin. The contents of
quercetin determined in the available literature are quite variable, ranging
between 5.27 and 14.30 pg/g DW [64,79,80]. In various plant species, the
guercetin level increased due to drought [78], salt [81], and lead stress [82].
Several studies carried out on various plant species concluded that higher
guercetin accumulation is a response to increased light exposure and UV-B
radiation [83,84], which may partially explain the seasonal variations in the
guercetin content observed in our study.

Another minor flavonol identified in this study was kaempferol. Only three
genotypes, namely 'Cahuil A’, "Cohamamba A’, and '‘QQ74’, showed the
presence of kaempferol in three out of four years of analysis. None of the
genotypes showed the presence of kaempferol in all four years. Quercetin,
together with kaempferol exhibited a content variability between samples with
different geographical origins; therefore, they could be considered metabolic
markers [59]. The year 2021 was the least favorable for kaempferol
accumulation. Similarly to quercetin, kaempferol synthesis is impacted by light
exposure and UV-B radiation [83]. Therefore, the abundant rainfall in 2021
probably decreased the amount of sunlight reaching the quinoa accession,
causing a low content of kaempferol.

Lastly, quercitrin (also referred to as quercetin 3-rhamnoside or quercetin 3-O-
rhamnoside) was identified in this study; however, trace amounts occurred in
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only 17 genotypes grown in 2020 and in three genotypes grown in 2019. This
compound was previously quantified in the study by Jiang et al. [79]; however,
in contrast to our results, the authors indicated quercitrin, together with
glycitein, as the major polyphenols in quinoa. In our study, no glycitein was
found.

The next group of secondary metabolites detected in this study was the phenolic
acids. The most abundant compound from this class was p-coumaric acid. The
highest content was detected in genotypes “Cohamamba B” (9.72 + 0.37 ng/g
DW in 2018), and "Cahuil B" (7.87 + 0.24 ug/g DW) in 2020. These genotypes,
however, did not perform well in other years. Overall, the lowest content of p-
coumaric acid throughout all four years was found in the genotypes "Red Head
A’ and 'Red Head B’. Different values among genotypes were observed
[20,64]; therefore, the reported p-coumaric content in the available literature
does not correspond to the data obtained in this study.

The year with the highest p-coumaric acid value was 2018 (Figure 3.2), which
may suggest that the synthesis of this compound is upregulated by heat and
increased exposure to sunlight, similar to what was reported in Nicotiana
langsdorffii Weinmann [85] and hard fescue (Festuca trachyphylla) [86]). In
comparison to other genotypes, ‘Dave 407B’, 'Apelawa B1l’, and "Mint
Vanilla” showed relatively high stability in p-coumaric acid content during the
studied years.

Salicylic acid was the next metabolite identified in our study. This important
phytohormone regulates several metabolic processes, and the production of
metabolites thereby protecting the plant against multiple abiotic stresses. For
example, it serves as a protection against heat [86] or high contents of heavy
metals in the soil [82]. In quinoa, salicylic acid improves salinity tolerance [87]
and it increases under UV-B exposure in some genotypes [88]. An unusually
high concentration of this metabolite was recognized in the genotypes
"Apelawa A’ (6.82 +0.67 ug/g DW) and ‘Dave 407B" (4.43 + 0.25 ug/g DW)
in 2019 and 2018, respectively.

Caffeic acid was only found in the quinoa accessions in relatively low quantities
(0.09 £ 0.00—0.90 £ 0.07 ng/g DW). The highest amount of this compound was
measured in the year 2020 (Figure 3.2). Galieni et al. [77] reported a higher
synthesis of caffeic acid under drought stress. In the sum of precipitation, the
year 2020 was not the driest; however, April and July of this year had extremely
low rainfall, which could have contributed to the higher accumulation of this
phenolic acid.
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A very low amount of gallic acid was evaluated in all quinoa genotypes.
Increased levels of this phenolic acid were observed in 2020, especially in the
genotypes '‘Baer D" and "Cohamamba A’. Furthermore, chlorogenic acid,
neochlorogenic acid, and 2-OH- cinnamic acid were identified in quinoa
accessions; nonetheless, they were not present in all genotypes, and/or they
were found in trace amounts. In addition, neochlorogenic acid and 2-OH-
cinnamic acid had not been identified in quinoa previously.

The group of flavones was primarily represented by isorhamnetin, with only a
trace concentration. This compound was previously reported by Stikic et al.
[80] with the content of 3.00 pg/g DW in the genotype "Puno’, but with none
in the genotype "Titicaca’. Other minor compounds detected in this study were
apigenin, vitexin, isovitexin, and orientin, which were previously found in other
studies [20,89]. Furthermore, homoorientin and luteolin were also detected in
minor concentrations; however, they were present only in the year 2021. These
compounds had not been described in quinoa before. Nonetheless, all the minor
compounds were detected only in a few genotypes. Lastly, rhamnetin was not
indicated in any of the analyzed genotypes.

The most abundant compound from the flavanols groups was miquelianin, also
named quercetin 3-O-glucuronide or quercetin glucuronide. The level of this
compound ranged between 0.26 + 0.02 pg/g DW (genotype '‘Red Head B” in
2019) and 33.86 £+ 1.10 pg/g DW (genotype ‘QQ056" in 2018). Similar values
were reported by Gomez-Carvaca et al. [90]. The year 2018 showed a total of
five extremely high values, for the same genotypes as reported for isogquercetin.
In addition, 2018 was also the year with the highest mean concentration of
miquelianin (Figure 3.2). The result of the correlation study showed that
miquelianin and isoquercetin had a strong positive association (Figure 3.4).

Furthermore, epicatechin and taxifolin were quantified only in some quinoa
genotypes and during some years, with the highest mean content in 2021.
Epicatechin had already been identified in quinoa [64]; however, taxifolin was
described here for the first time. Catechin was not detected in this research in
any genotype, but it was reported by Tang et al. [8]. Naringenin was the only
flavanone detected in this study; however, its amount was negligible in
comparison to the other compounds. This compound had not been detected in
quinoa previously. Furthermore, hesperidin was also screened, but its presence
was not confirmed, as opposed to in Jiang et al. [79].

The only flavan identified in this study was pinocembrin. This compound was
highly accumulated during the year 2020, whereas the lowest mean content was
reported in 2021. No pinocembrin was found in the year 2018, except for in the
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genotypes ‘Baer B” and "QQ57A". Garcia-Parra et al. [20] observed similar
values of pinocembrin content. The group of methoxybenzenes was represented
by N-feruloyl octopamine (NFO).

This compound reached the highest mean concentration in 2020 (3.30 + 4.32
ug/g DW) (Figure 3.2). This year showed extremely high values in the
genotypes "Cohamamba A" and "Tallin A’, which were also observed in 2021.
This compound had not been detected or quantified in quinoa before. NFO was
reported as an accelerator for cell apoptosis [91] and a promising treatment for
hepatocellular carcinoma [92]; however, the role of this metabolite in plants has
not been fully elucidated. The results of our research showed a relatively low
variability in this compound throughout the analyzed years, which suggests that
NFO is less affected by environmental conditions; however, further
investigation is needed.

4-OH-benzaldehyde (4-hydroxybenzaldehyde) is the representative of the
group of hydroxybenzaldehydes. 4-hydroxybenzaldehyde was previously
reported to have antifungal, antiobesity, anti-inflammatory, antiangiogenic, and
antinociceptive  activities  [93-95]. The  concentration of 4-
hydroxybenzaldehyde compound ranged between 0.21 + 0.01 pg/g DW
(genotype ‘Kcoito A" in 2018) and 5.01 + 0.22 ug/g DW (genotype '‘QQ87" in
2021).

Emodin was classified as an anthraquinone. This compound possesses
antifungal properties against Candida albicans [96]. Several studies also
reported anticancer activity [97,98]. In this study, the content of this metabolite
was very variable between the years and genotypes. In 2018, only five
genotypes contained emodin; as opposed to 2021, in which all genotypes
contained this metabolite. To our knowledge, emodin, and 4-
hydroxybenzaldehyde had never been identified or quantified in quinoa
previously. The highest synthesis of both compounds was observed in 2021,
which suggests the potential role of these metabolites in quinoa protection
against high water levels and/or possible fungal diseases; however, this area
requires deeper investigation. Furthermore, genistein and umbelliferon were
searched for in this study, but no content of these metabolites was found. The
presence of genistein in quinoa was reported by Antognoni et al. [63]. In
contrast, umbelliferon was not found in quinoa [99].

3.3.7. PCA analysis

A PCA representation of the data for the 19 selected descriptors further
distinguished between the individual genotypes (Figure 3.6). In the diagram,
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the large central group of genotypes of Chilean provenance is located in the
lower right corner. Of greater interest are the several genotypes located in the
outer parts of the plot. The separation of these genotypes suggests the
uniqueness of their respective genotypes with respect to the analyzed samples.
Although some accessions of the same origin are located close together in the
plot, geographical provenance seems to have little to no effect on the spatial
distribution of the accessions within the plot. Of the analyzed traits, the
separation of genotypes along the first axis, explaining 16.39% of the total
variance, is mostly affected by MIQ, TPC, RUT, AA, and IQCE
(Supplementary Figure S1). On the other hand, the strongest influence on the
distribution of genotypes along the second axis, explaining 11.21% of the total
variance, was from MAU and PCB values.
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Figure 3.6 Principal component analysis based on a set of 19 descriptors for
the set of 41 genotypes. Two main components explaining 16.39% and 11.21%
of the total variability, respectively, are displayed. Individual accessions are
labeled according to the country of origin, as illustrated in the legend on the
right side of the plot.

3.4. Conclusion
For the first time, an extensive collection of 41 quinoa genotypes was evaluated

over four years under the environmental conditions of the Czech Republic, and
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Central Europe. The morphological traits of plant height, inflorescence length,
and weight of a thousand seeds were determined. Most of the quinoa accessions
had a better performance in the selected morphological traits in the year 2018,
characterized as the driest and with high temperatures in the first half of the
growing season.

The crude protein content of quinoa accessions was within the range previously
reported for quinoa cultivated in Europe. The protein content was the highest
in warm vyears, but high precipitation significantly affected the protein
synthesis. A similar pattern was observed for the accumulation of phenolic
compounds. Contrarily, the TPC and AA were enhanced by high rainfall.

A total of 28 metabolites were detected and quantified in quinoa. The most
abundant flavonoids were mauritianin, miquelianin, rutin, and isoquercetin.
The most abundant contributor to AA was miquelianin. The content of all
phenolic compounds varied with the changing weather conditions in the
analyzed years, except for isoquercetin, quercetin, and N-feruloyl octopamine,
which remained relatively stable values throughout the years of analysis. To
our knowledge, six compounds (2-OH-cinnamic acid, homoorientin, luteolin,
naringenin, N-feruloyl octopamine, and 4-OH-benzaldehyde) have never
previously been identified or quantified in quinoa.

A proper selection of appropriate genotypes to accomplish given production
aims is needed. Furthermore, the determination of genotype-variable and
genotype-stable traits is crucial. Over the four distinct growing periods, the
tested genotypes showed variability in response to different environmental
conditions. Nonetheless, the genotypes. "Mint Vanilla’, "Cahuil A’, "Apelawa
Al’, and '‘Braunschweig B” seemed to be less affected by weather conditions
in a given year, since they reached relatively high and stable protein contents
throughout all four years of analysis in the conditions of the Czech Republic.
In addition, "Red Head A’, together with "QQ87" and "Isluga A" performed best
regarding their stability in the weight of a thousand seeds.

Altogether, our results confirmed the potential of quinoa as a promising source
of nutrients and various bioactive compounds. Furthermore, several quinoa
genotypes that are well suited to the climatic conditions of Czech Republic,
were identified in this study. With its ability to perform stably or even benefit
from periods of hot and drought stress, quinoa might be a potential solution for
farmers threatened by the weather extremities caused by climatic change.

Supplementary Materials: The following supporting information can be downloaded
at: www.mdpi.com/article/10.3390/foods12071440/s1, Table S1. Mass spectrometric data,
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negative ionization. Table S2. Summarized data of evaluated traits and nutritive
compounds (means and standard deviation) of the tested genotypes in all years. Figure
S1. The quality of representation of the variables in the factor map. Squared coordinates
are displayed. The color scale is proportional to the color key on the right side of the
plot.
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Abstract

Quinoa is a highly nutritious crop with diverse applications in the food industry.
The study assessed the impact of various processing techniques, including
microwaving, boiling, roasting, steaming, flaking, and germination, on the CP,
TPC, AA, and 12 phenolic compounds in quinoa. CP was significantly affected
by the heat treatments. Boiled quinoa flakes exhibited the highest average CP
while boiling and roasting were the lowest. Microwaving strongly enhanced the
TPC and the content of six bioactive compounds (CFA, KMP, NAR, QCE,
RUT, SA) while boiling and steaming had the most adverse effect. Germination
improved the overall nutritional profile of quinoa. The most pronounced
increase in the bioactive metabolites occurred between the third and fifth day
of germination in a genotype-dependent manner. Six metabolites (NAR, SA,
4BA, 1Q, PC, IH) were detected in germinated quinoa for the first time. The
results emphasize the substantial influence of processing techniques and type
of sample on quinoa nutritional quality and underscore the importance of proper
consideration of those factors to obtain nutritionally optimal food products.
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41. Introduction

Quinoa is a highly versatile crop with outstanding nutritional value, which was
recognized even by ancient Andean populations, considering this pseudocereal
a sacred food [1]. Although its cultivation has already spread worldwide, the
biggest producers are still the countries of quinoa origin—Peru, Bolivia, and
Ecuador [2]. Quinoa has been traditionally consumed in the form of grain or as
an ingredient in many food products and dishes, such as soups, porridges, buns,
and drinks [3]. Its growing popularity has led to the development of novel foods
containing quinoa, in particular gluten-free, vegetarian, vegan, and dairy-free
products [4, 5].

Although quinoa’s nutrient-rich profile has been the subject of extensive
research, most of the studies were, however, realized on raw materials.
Nonetheless, quinoa is usually not eaten raw but processed to decrease the
content of anti-nutritional compounds, such as saponins and phytic acid [6, 7].
Studies have shown that commonly used processing methods, such as boiling,
steaming, microwaving, and extrusion may alter the nutritional content and
composition, as well as the overall bioavailability of nutrients. For example,
microwaving and boiling under pressure have been reported as a suitable
technique for the preservation of polyphenols. In comparison, boiling caused
the major loss of phenolic compounds and minerals [6, 8]. Although the protein
content is not significantly affected by the common heat-utilizing preparations
[6], it has been described that some methods like microwaving and fermentation
may increase the protein digestibility of the final quinoa product [9, 10].

Apart from heat-utilizing preparations, germination has emerged as an
alternative and relatively cheap processing technique for improving the
nutritional profile by promoting enzymatic activity and release of various
bioactive chemicals and minerals [11, 12], while reducing the content of
antinutritional factors like phytic acid and tannin [13, 14]. Germination may
further improve the biological value of quinoa protein and its overall
digestibility [15, 16].

Comprehensive studies are needed to explore the impact of different
preparation methods on those traits and their implications for further food
processing. Therefore, this paper aimed to evaluate a spectrum of quinoa seed
preparation methods and evaluate their impact on the content of protein,
antioxidant activity, total phenolic content, and 13 phenolic compounds. By
providing an extensive analysis of these effects, this paper aims to raise
awareness about quinoa nutritional quality and the selection of appropriate
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processing techniques to preserve the high-quality nutritional profile of quinoa
food products.

4.2. Materials and methods

4.2.1. Plant material

A total of three quinoa samples were subjected to analysis. The original seeds
of two quinoa samples (genotypes ‘Besancon’ and "Faro”) were provided from
the U.S. National Plant Germplasm System operated by USDA. The seeds of
these two genotypes were multiplied to provide sufficient material for further
experiments in the experimental field of the Crop Research Institute in Prague
in the Czech Republic during the year 2021. One commercial quinoa sample
(Probio) was kindly provided by PRO-BIO Ltd, Czech Republic.

4.2.2. Procedure of germination

Germination was carried out on commercial Probio samples and genotypes
"Besancon” and "Faro’. A total of 10 g of healthy and undamaged seeds from
each sample was used for the experiment. In addition, seeds of genotypes
"Besancon” and "Faro” were thoroughly rinsed in 30% (v/v) hydrogen peroxide
for disinfection purposes to minimize microbiological contamination of the
seed surface from the field condition. Then, the seeds of all three samples were
washed several times in distilled water. All three samples were soaked in
distilled water for 4 h, drained, and then placed in a sterile Petri dish lined with
moist filter paper and covered with the lid. Hydrated quinoa seeds were allowed
to germinate for 1 day (24 h), 2 days (48 h), 3 days (72 h), 4 days (96 h), and 5
days (120 h), respectively. The germination of the Probio sample is shown in
Figure 4.1. Germination was performed at room temperature under a 16/8
day/night regime and seeds were regularly watered with distilled water.
Sprouted seeds were collected each day of germination and lyophilized before
the next use. Samples were stored in a cold and dark place for following
laboratory analyses. The non-germinated samples were indicated as control
samples.
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Figure 4.1 Germination of Probio sample for 1 day (24 h, A), 2 days (48 h B),
3 days (72 h, C), 4 days (96 h, D), and 5 days (120 h, E)

112



4.2.3. Processing techniques

The commercial sample Probio was subjected to several heat-utilizing
processing techniques. All processing techniques were carried out under
atmospheric pressure at room temperature. Before each thermal processing, the
Probio sample was soaked in distilled water for 24 hours. The excess water was
drained from the samples before the following treatments. For each treatment,
the sampling intervals were established. After each sampling interval, quinoa
seeds were immediately drained from any excess water, transferred to a sterile
container, and labeled accordingly for subsequent analysis. After a cool-down,
samples were lyophilized and stored in a cold and dark place for following
laboratory analyses. The non-processed samples were indicated as control
samples.

In the case of boiling in plain water, grains were boiled in distilled water in the
ratio of 1:2 (w/v) for 5, 10, and 15 min. The boiling in NaCl used the same
proceeding, salt was at the concertation of 10 g/L (w/v). Microwaving was
realized in the microwave oven (ETA 2209 90,000, ETA a.s., Czech Republic)
for 1, 2, and 3 min at the power of 1050 W. Another batch of samples was
roasted on the pan for 5, 10, and 15 min at the temperature of 180 + 20 °C.
Lastly, steaming was carried out by placing the quinoa grains on a fine mesh
sieve and set over boiling water, covered with a lid. The sample was steamed
for 5, 10, and 15 min.

Further, raw Probio seeds were mechanically pressed to obtain flakes using a
food processor (Jupiter Kiichenmaschinen, System Drive Unit, Weimar,
Germany) equipped with a flake roller. Raw quinoa flakes were boiled in
distilled water in a ratio of 1:2 (w/v) for 1, 2, 3, 4, and 5 min following the same
procedure as mentioned in the first paragraph. Boiled flakes were subjected to
chemical analysis.

4.2.4. Chemicals

Polyphenolic compounds, including 4-OH benzaldehyde, caffeic acid, gallic
acid, isoquercetin, isorhamnetin, kaempferol, naringenin, pinocembrin,
quercetin, quercetin 3-O-glucuronide, rutin, and salicylic acid, along with the
internal standard probenecid were procured from Sigma—Aldrich (St. Louis,
MO, USA). Methanol of LC-MS grade (> 99.9%) was sourced from Riedel de
Haén (Seelze, Germany), while formic acid of LC-MS grade (99%) was
obtained from VWR (Leuven, Belgium). Pure water was acquired from a Milli-
Q purification system manufactured by Millipore (Bedford, MA, USA).

113



4.2.5. Standard and sample preparation

The preparation of reference stock solutions involved dissolving the methanol-
dissolved reference standards of each phenolic compound to create stock
solutions at a concentration of 0.5 mg/mL. These reference stock solutions were
subsequently stored at —18°C. To establish the calibration curves for
quantifying the phenolic compounds, the stock solutions were diluted within a
methanol concentration range of 0.001-2.000 pg/mL. In addition, probenecid
was dissolved in methanol at a concentration of 0.5 mg/mL to generate a stock
solution of the internal standard. The internal standard was then added to the
individual reference standard solutions or test samples, resulting in a final
concentration of 0.1 pg/mL.

For the analysis using mass spectrometry, the lyophilized samples were milled
using an IKA A11 basic mill (IKAWerke, Staufen, Germany), and the resulting
mixture was stored in well-sealed plastic bags in a dark, cold place at 4°C. The
extraction of the sample followed the method described by Janovska et al. [17].
Briefly, 0.1 g of the milled mixture was extracted twice with 1 mL of extraction
solvent (comprising 80% methanol with probenecid as internal standard at a
concentration of 0.1 pg/mL) in Eppendorf tubes. The extraction was performed
using an ultrasonic bath for 60 min at 45°C. After extraction, the samples were
centrifuged for 10 min at 13,500 rpm. The obtained supernatants from each
sample were then filtered through 0.2 um nylon syringe filters for further
analysis.

4.2.6. UHPLC-ESI-MS/MS instrumentation

The chromatographic analysis was conducted using the Dionex UltiMate 3000
UHPLC system (Dionex Softron GmbH, Germering, Germany), comprising a
binary pump (HPG-3400RS), an autosampler (WPS-3000RS), a degasser
(SRD-3400), and a column oven (TCC-3000RS). Detection of analytes was
performed on the quadrupole/orbital ion trap Q Exactive mass spectrometer
(Thermo Fisher Scientific, San Jose, CA, USA). The LC-MS system was
equipped with a heated electrospray ionization source (HESI-II) and operated
using Xcalibur software, version 4.0 (Thermo Fisher Scientific, San Jose, CA,
USA).

4.2.7. UHPLC-ESI-MS/MS analysis

The analytes were separated on a reversed-phase C18 Ascentis Express column
(2.1 x 100 mm, 2.7 um) from Supelco (Bellefonte, PA, USA). The
chromatographic separation was performed using a gradient elution method.
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Solvent A consisted of 0.2% formic acid (v/v) in water, while solvent B
comprised methanol with 0.2% formic acid (v/v). The LC gradient commenced
with 99% of solvent A and 1% of solvent B at 0 min., followed by a linear
gradient elution to 40% A and 60% B at 11 min. The column was then flushed
with 100% solvent B for 2 min. Equilibration of the column was accomplished
by washing with 99% A and 1% B for an additional 2 min. The total analysis
time was 15 min. The column temperature was maintained at 40°C, and the
flow rate was set to 0.35 mL/min. The injection volume was 1 pL.

The mass spectrometer analysis was conducted in negative electrospray
ionization (ESI) mode. The spray voltage was set at —2.5 kV, and the sheath
gas flow rate, auxiliary gas flow rate, and sweep gas flow rate were 49, 12, and
2 arbitrary units, respectively. The capillary temperature was 260°C, and
nitrogen was used as the sheath, auxiliary, and sweep gas. The heater
temperature was maintained at 419°C, and the S-lens RF level was set to 30.
Precursor ions in the inclusion list were isolated within a retention time window
of + 60 s, filtered in the quadrupole at the isolation window (target m/z + 0.8
m/z), and fragmented in an HCD collision cell C-trap at a resolution of 17,500
FWHM (full width at half maximum). The AGC target value was 1 x 106, and
the maximum injection time was 50 ms.

The normalized collision energy (NCE) was optimized for each compound.
Details of the precursor and daughter ions monitored, retention times, and NCE
values can be found in Table S1. The precision and calibration of the Q Exactive
Orbitrap LC/MS/MS instrument were assessed using a reference standard
mixture provided by Thermo Fisher Scientific. The measurements were
performed in triplicate, and the data were evaluated using Quan/Qual Browser
Xcalibur software, version 4.0.

4.2.8. Determination of the phenolic compound concentration in quinoa
samples

The identification of phenolic compounds in the quinoa samples relied on their
retention times compared to authentic standards and the analysis of mass
spectral data obtained through LC-MS/MS. Accurate mass determination was
employed to generate elemental compositions and fragmentation patterns of the
molecular ions. Quantification was done based on the transition from precursor
ion [M + H]+ to the corresponding quantification ion (Table S1). Calibration
curves were then established by plotting the peak area, adjusted with
probenecid as an internal standard, against the concentration of the
corresponding reference standards.
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4.2.9. Chemical analyses

All three quinoa samples were also investigated for the effects of germination
on the protein content (CP), total phenolic content (TPC), and antioxidant
activity (AA). For analysis, lyophilized samples were used. The CP content of
each sample was measured using the classical Kjeldahl mineralization method
and calculated using a conversion factor of 6.25 [18]. For this method, 1 g of
milled sample was utilized. The TPC was determined using Folin—Ciocalteau
(FC) reagent with slight modifications based on the method [19]. The FC
method employed 2 g of sample. The TPC results were expressed as grams of
gallic acid equivalent (GAE) per kilogram of sample DW (GAE g/ kg DW).
The AA of the samples was assessed using a DPPH assay [20], utilizing 1 g of
milled sample in this study. The results of the DPPH assay were expressed as
millimoles of Trolox equivalent (TE) per gram of sample DW (umol TE/g
DW). Two replicates were performed for each protein content, TPC, and AA
measurement.

4.2.10. Statistical analyses

Three biological replicates were measured for descriptors of interest. Statistical
analysis was conducted using the R program [21]. Means and standard
deviations were calculated for each sample type and processing method in
individual traits. One-way analysis of variance (ANOVAZ2) was performed to
determine whether there was a significant effect of the preparation method or
sample type on evaluated traits. For germination data, the method was also
applied to confirm if there was a significant difference between the three
evaluated cultivars. Tukey’s honestly significant difference (HSD) test was
employed to identify processing methods and their variants with significantly
different means. To explore the association among samples, a principal
component analysis (PCA) was conducted using scaled data for a set of 14
descriptors. The quality of the representation of variables on the factor map was
also assessed for the first two components with the largest variance. The
routines within FactoMineR [22] and factoextra packages [23] were used for
this task and to visualize PCA results.
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4.3. Results and discussion

4.3.1. The effect of germination

The presented study investigated the effects of germination on the CP, TPC,
AA, and the quantity of twelve metabolites in two quinoa genotypes "Faro” and
‘Besancon” and one commercial sample Probio (Figure 4.2). During
germination, slight but statistically significant changes (at p < 0.05) in CP were
observed across all samples, depending on the duration of germination. Probio
displayed the highest increase on the fourth day, reaching 17.18 + 0.01% DW
compared to 15.47 £ 0.21% DW in control. ‘Faro’ and ‘Besangon’ peaked on
the third day reaching CP of 13.93 + 0.02% and 15.58 + 0.15% DW,
respectively. Such increases in protein content have also been documented in
other Amaranthaceae species [14].

The elevated CP levels can be attributed to the enhanced enzymatic activity,
particularly a-amylase, liberating proteins packed proteins in starch granules
[24] or due to de novo synthesis [14]. Additionally, seed respiration during
germination reduces dry weight, contributing to an apparent increase in CP
percentage [14].

Germination also significantly improved AA, which assess it as the superior
processing technique compared to others in this study. Although AA initially
declined by 30% in ‘Faro’ and ‘Besancon’, it subsequently increased, peaking
on the third day in ‘Faro’, fourth in ‘Besancon’, and fifth in Probio.

The rise in AA is likely due to elevated enzymatic activity and the synthesis of
low-molecular-weight antioxidants, although germination conditions play a
critical role in the magnitude of this increase [7].

Besides, our results indicated that differences in AA increment were related to
the studied sample/genotype, confirming the earlier reported research carried
out on white and red quinoa [25]. In our case, the most promising sample was
Probio, since it did not show any remarkable drop in the beginning of
germination, and it further reached the highest AA values on the fourth day of
germination among other studied samples.
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Figure 4.2 The effect of germination time on selected nutritional parameters of
three quinoa samples.

Significant differences in means among control (C) and days of germination [1 day
(G1D), 2 days (G2D), 3 days (G3D), 4 days (G4D), and 5 days (G5D)], are denoted by
the different letters (Tukey HSD) above each column. Letters A-C indicate statistical
differences within treatments, while letters A-E denote statistical differences among
treatments for individual cultivars. The error bars displayed in the respective plots
represent the standard deviations from the means. The abbreviations for the selected
descriptors are as follows: gallic acid (GA), 4-hydroxybenzaldehyde (C4B), caffeic
acid (CFA), quercetin-3-O-glucuronide (Q3G), isoquercetin (1Q), rutin (RUT),
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salicylic acid (SA), quercetin (QCE), naringenin (NAR), kaempferol (KMP),
pinocembrin (PC), isorhamnetin (IH), crude protein content (CP), antioxidant activity
(AA), total phenolic content (TPC)

Significant variations (p < 0.05) in TPC were indicated among the quinoa
samples and germination days. The highest TPC was recorded for the
"Besangon” (25.77 £ 0.15 GAE g/kg DW) on the second day of germination,
which aligns with the findings of Guardianelli et al. [25], but conflicts with
Bhinder et al. [25], who recognized the peak values during the third and fourth
day of germination. Detected contradictions may be attributed to the dynamic
chemical changes during the germination including compound synthesis,
release from bound form, or consumption [26]. In addition, specific
germination conditions should be taken into consideration as factors
influencing the TPC during germination [27]. As opposed to ‘Besancon’,
"Faro’, and Probio samples showcased their highest TPC values in the non-
germinated state (23.71 + 0.08 and 22.46 + 0.88 GAE g/kg DW, respectively).
Different rates of polyphenol accumulation in two different quinoa samples
were published formerly [25], indicating that selecting the optimal genotype is
crucial for maximizing phenolic compound levels during germination.

The content of twelve studied metabolites determined by UHPLC-ESI-MS/MS
analysis is given in Figure 4.2. The dominant compound in non-germinated
quinoa sample was quercetin 3-O-glucuronide (Q3G), also known as
miquelianin, whereas rutin (RUT) became the most abundant in germinated
samples. RUT demonstrated an increasing accumulation with extended
germination time, peaking between the fourth and fifth days, particularly in
‘Faro’. Similar findings were presented in the study of Al-Qabba et al. [28] and
Bhinder et al. [28].

As mentioned in the beginning, Q3G was the most abundant metabolite in non-
germinated quinoa seeds, which is in agreement with Dostalikova et al. [29].
This metabolite has been primarily detected in aerial plant parts in various plant
species [30-32], but research quantifying the content of Q3G in seeds is
insufficient. During the germination, Q3G showcased an opposite pattern as
RUT with an 80% decline in the initial days of germination in "Besangon” and
‘Faro’. Contradictory results were published by Pilco-Quesada et al. [16]
demonstrating a significant growth in the content of Q3G after 72 h of quinoa
germination.

The isoquercetin (1Q) followed the same trend as discussed here in the case of
Q3G. The drop in values was also noticed for salicylic acid (SA) and 4-
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hydroxybenzaldehyde (4BA) after the first day of germination. Gallic acid
(GA), naringenin (NAR), and caffeic acid (CFA) were presented in quinoa
samples in relatively trace concentrations, concerning other studied
compounds. The germination process improved their content, especially during
the first 3 days of germination. To the best of our knowledge, NAR, SA, 4BA,
and 1Q have not been quantified in germinated quinoa before.

A small amount of kaempferol (KMP), pinocembrin (PC), quercetin (QCE),
and isorhamnetin (IH) was detected in non-germinated samples. These
metabolites were rapidly synthesized during the fifth day of the germination
process, but the degree of increment varied among the studied genotypes.
Besides, the mean PC content was the highest in germinated quinoa contrasting
to raw and heat-treated samples. While the increase in KMP and QCE
concentrations during germination has been already published for quinoa [7,
28], it was not as prominent as observed in our study. To our knowledge, the
presence of PC and IH in germinated quinoa has not been evaluated before,
nonetheless, they have already been described in sprouted mung bean [33] and
buckwheat [34].

Overall, the germination process led to the enhancement of several bioactive
compounds, including GA, CFA, RUT, QCE, NAR, KMP, PC, and IH in
comparison to the control sample, suggesting their potential role in the
germination process. The most substantial increase in the content of these
metabolites was reported between the third and fifth days of germination. This
pattern further aligns with consumer trends favouring antioxidant-rich foods,
known for their health benefits, particularly in reducing oxidative stress. The
ability to enhance bioactive compounds through germination offers potential
for food industry aiming to position quinoa as a functional food [57].

Conversely, germination initiated a decline in the levels of 4BA, Q3G, 1Q, and
SA. The alterations in metabolite quantity occurred in a genotype-dependent
manner, with "Besangon” and "Faro” exhibiting the most intense synthesis of
metabolites during germination. On the other hand, the changes in the chemical
content of the Probio sample were less prominent.

It has been suggested previously that various metabolic and enzymatic events
occurring during germination may synthesize or consume the phenolic
compounds, thus elevating or decreasing their overall content. In addition,
those compounds play a non-negligible role in protection against free radicals
generated during the germination process [26]. However, other factors like
genotype, agronomic conditions, maturity level at harvest, and postharvest
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storage conditions may considerably contribute to the variations in the
polyphenol content of germinated quinoa [26].

4.3.2. Seed soaking

Quinoa seeds are prized for their superior nutritional quality, especially their
high content of proteins and bioactive chemicals [35]. While this area has been
researched extensively, most of the studies examined only raw materials, which
might not give a full picture of quinoa's potential and health benefits. Therefore,
this paper evaluated the effect of various processing methods and processing
time on the CP, TPC, and AA (Figure 4.3) and the content of selected bioactive
compounds (Table 4.1) of the Probio sample. Soaking was proven to be
effective in minimizing the content of anti-nutritional compounds [36].
However, our results indicated that soaking in water worsened the majority of
the studied nutritional parameters. The exceptions were metabolites KMP,
NAR, PC, and RUT where soaking led to a rise in their content. Presented
alterations after soaking might be related to various factors.

The reduction in CP could be attributed to a leaching of quinoa seed storage
proteins into soaking water [14]. Similarly, a softening of cell wall tissues could
potentially facilitate the increased release of polyphenols into the soaking
medium [37], thus possibly reducing the TPC and AA of soaked seeds. In
addition, the variability in the metabolite content could be ascribed to the
commencement of the seed germination processes, as discussed above.

4.3.3. Boiling in plain water and NaCl solution

When comparing two boiling solutions, boiling in plain water showed slightly
better results in CP content and the AA, principally after 15 min of treatment,
with respect to the boiling in NaCl. The values reported after 15 min of boiling
in plain water were relatively similar to the control sample in both parameters.
It was previously stated that no significant alterations in CP occurred after 15
min of boiling [6]. However, other studies have reported that a decrease in CP
may occur due to leaching into the boiling solution [14], and this effect is more
pronounced when washing is combined with boiling [36].

Boiling significantly decreased the TPC and AA in quinoa seeds. Several
factors may affect the parameters, including sample variety, processing
conditions, and analytical methods. A decrease observed in this study was
likely due to the leaching of polyphenols into the boiling water, which reduced
their concentration in the final product. Furthermore, thermal degradation may
contribute to the overall decline in TPC and AA [38]. Conversely, the release
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of polyphenols and the inactivation of phenol oxidase during boiling may
enhance polyphenol availability, as previously observed in buckwheat [37].

Boiling in plain water was also not suited for the enhancement of 4BA, CFA,
1Q, Q3G, and SA (Table 4.1), but it slightly improved the content of KMP and
PC, compared to control. Boiling in NaCl was considered more beneficial in
contrast to boiling in plain water since most of the studied metabolites reached
higher mean values in their content. The presence of salt in the solution could
increase the boiling point and therefore induce a higher degree of thermal
dissociation of bound molecules, as proposed for pulses [39].

In the principal component analysis (PCA) plot (Figure 4.4), boiling in both
solutions was grouped in the lower-left region, indicating that both methods
were generally not very effective for nutrient preservation compared to other
processing methods, possibly due to the nutrient leaching. Therefore, to
minimize nutrient loss, boiling should be conducted with precise amount of
water to avoid draining of the solution that may contain valuable nutrients
leached from the seeds.

4.3.4. Flaking

Flakes from whole quinoa seeds demonstrated a noteworthy reduction in the
required boiling time, reducing it to a mere 5 min, concerning the boiling of
whole seeds. Therefore, further utilization of quinoa flakes could be potentially
advantageous in mitigating the heat-induced degradation of thermally unstable
compounds. It is noteworthy that research in this specific domain for quinoa
remains scarce. The shorter cooking time of quinoa flakes enhanced the TPC
and the content of 1Q, NAR, and SA, in contrast to the boiled seeds, however,
compared to other treatments, flaking was characterized by lower antioxidant
activity, reduced phenolic content, and minimal association with key bioactive
compounds, except for 4BA and Q3G (Figure 4.4). In addition, boiled flakes
achieved the highest CP values when compared to all the other heat-utilizing
methods investigated herein. While the precise impact of flaking and boiling of
quinoa flakes on the final nutritional quality has not been studied yet, it was
previously concluded that flaking of ancient cereals and legumes may increase
or decrease the TPC and AA depending on the type of sample. Contrary, the
protein content was not significantly affected by flaking [40].

Growing environmental awareness, concerns about animal welfare and a strong
shift toward sustainable eating habits have driven an increased demand for
plant-based protein sources [52]. Additionally with the increasing demand for
protein-rich foods in human diets [53], rolled quinoa flakes may offer a
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promising alternative used as enhancement of low-protein morning cereals and
porridges [54]. Moreover, quinoa's high nutritional value makes it an ideal
ingredient for the development of novel, protein-enriched food products.

4.3.5. Microwaving

Microwaving was a relatively suitable method for enhancing the protein content
since the mean CP of microwaved samples was the second highest among other
studied treatments (15.56 + 0.10%). Furthermore, CP remained unaffected by
varying microwave exposure times (Figure 4.3). There is a lack of
comprehensive studies elucidating the impact of microwaving on quinoa CP,
however, studies conducted on other species, such as legumes and buckwheat,
indicated quite variable outcomes in this area [41, 42]. While the mean AA
values were statistically comparable to roasting and boiling in NaCl, the TPC
values for microwaving were outstanding, reaching the peak in the third minute
(27.15 + 0.82 GAE g/kg DW). In a parallel study, a similar reduction in AA
with increasing time of processing was noticed, nevertheless, the highest TPC
was detected after 5 min of microwaving [43].

Half of the studied metabolites, namely CFA, KMP, NAR, QCE, RUT, and SA,
displayed the highest mean content during microwaving (Table 4.1), in
comparison to other heat treatments and raw samples. This observation aligns
with the PCA analysis results (Figure 4.4), where microwave-treated samples
distinctly cluster along the first principal component axis, revealing a strong
influence from the mentioned traits. Including all heat treatments, GA was only
found in microwaved and roasted samples.

As concluded by Drulyte and Orlien [44], the heating effect of microwaving is
more intense and faster than alternative cooking methods. This distinctive trait
leads to a reduction in overall processing time and, notably, correlates
positively with diminished losses of polyphenolic compounds [38]. In addition,
microwaving generates heat that causes rapid expansion and pressure build-up
within plant cells. This leads to the rupture of cell walls, facilitating the release
of phenolic compounds that were previously bound within the cellular matrix
or associated with cell wall components [51]. Our results confirmed the
conclusions of other studies that microwaving yields the highest number of
polyphenols among other heat treatments, thereby increasing the overall
antioxidant capacity [39, 43, 45, 46].
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Figure 4.3 The effect of various processing methods and processing time on
crude protein content (CP), antioxidant activity (AA), and total phenolic
content (TPC) of commercial Probio sample.

Significant differences in means (Tukey HSD) within individual treatments are indicated by
different letters (a-c) above each column. The letters (A-E) in the header of the plot show the
difference among individual treatments. A dashed red line within each plot denotes the overall
mean of data for the respective variable. The error bars displayed in the respective plots represent
the standard deviations from the means. The abbreviations for the selected processing methods
are as follows: control (C), SK (soaking), B (boiling), and B NaCl (boiling in NaCl) (min).
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4.3.6. Steaming

Steaming is, together with boiling, a commonly employed method of quinoa
preparation. Even though both processing methods generally led to a reduction
in the content of biologically active compounds compared to raw samples [47],
steaming is recommended as a more optimal method for better nutrient
retention over boiling [6]. This preference stems from the fact that, during
steaming, the quinoa seeds are not in direct contact with boiling water as
opposed to boiling, thereby minimizing nutrient leaching into the water [8]. Our
results confirmed this statement since the TPC in steamed sample was higher
than in boiled samples. In addition, steaming did not significantly affect protein
content in quinoa seeds, aligning with previously published research [6, 48]
although in contrast with Motta et al. [49], who reported a significant decrease
in CP in studied pseudocereals (Amaranthus sp., quinoa, and buckwheat). In
terms of studied metabolites, their quantity was either comparable or lower than
those observed in other heat treatments, except for IH, reaching the highest
value in this study (1.60 + 0.04 ug/g DW) after 15 min of steaming (Table 4.1).

4.3.7. Roasting

Roasted quinoa seed did not reach any outstanding values for the content of
protein and AA since both parameters were statistically comparable to boiling
in plain water and boiling in NaCl, respectively (Figure 4.3). Nevertheless,
roasted seeds exhibited a great content of total polyphenols, reaching values
comparable to the control after 15 min of roasting. The overall increment in
TPC during roasting can be attributed to the release of bound chemicals due to
heat and the formation of Maillard reaction products, but the yield of phenolics
is also influenced by the roasting temperature and time used during processing
[11]. This might explain the contradictory results of some studies, showing the
TPC and AA of roasted seed with values even higher than the control sample
[43, 46] and others with significantly reduced polyphenolic content [8].

In the case of metabolite content, roasting was associated with the enhancement
of some metabolites, such as NAR, RUT, KMP, and QCE, especially after 15
min of roasting time (Figure 4.4). Similar metabolites were investigated
previously in amaranth [50], nonetheless, the pattern of the changes during
roasting was distinct from our results. For example, QCE and KMP
significantly decreased after 15 min of roasting, whereas GA and CFA
increased rapidly.

The roasting of seeds offers dual benefits by not only enhancing specific
bioactive compounds but also improving sensory attributes such as flavor and
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aroma [50, 56]. Consequently, roasting can be considered a potentially
advantageous preparation method for consumers, contributing to both
nutritional value and palatability.
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Figure 4.4 Principal component analysis biplot based on scaled data for the set
of 14 descriptors and 22 different culinary treatments.

Two main components explaining 43.8 and 24.1% of total variance, respectively, are displayed.
Individual points in the plot stand for individual culinary treatments, highlighted by different
colors and variants of those treatments, representing treatment duration in minutes (m). The
arrows within the plot show the quality of representation of individual descriptors on factor maps
and their contribution to the first two axes. The abbreviations for the selected processing methods
and descriptors are as follows: control (C), SK (soaking), B (boiling), B NaCl (boiling in NaCl),
gallic acid (GA), 4-hydroxybenzaldehyde (4BA), caffeic acid (CFA), quercetin-3-O-glucoronide
(Q3G), isoquercetin (1Q), rutin (RUT), salicylic acid (SA), quercetin (QCE), naringenin (NAR),
kaempferol (KMP), pinocembrin (PC), isorhamnetin (IH), crude protein content (CP),
antioxidant activity (AA), total phenolic content (TPC).
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4.4. Conclusion

The present investigation was conducted to assess the impact of germination,
soaking, boiling, flaking, microwaving, steaming, and roasting on the selected
nutritional characteristics of quinoa. The quantitative analysis of 12 bioactive
compounds was conducted in three distinct quinoa samples during a 5-day
germination period. In all studied samples, GA, CFA, RUT, QCE, NAR, KMP,
IH, and PC were enhanced compared to the control, but the level of increment
was contingent upon the type of sample. This underscores the importance of
proper selection of genotype for optimum content of biologically active
compounds in germinated quinoa. The most substantial increase in bioactive
compounds was noticed between the third and fifth day of germination with the
highest accumulation of metabolites occurring in the genotypes ‘Besancon” and
‘Faro’. Six compounds (NAR, SA, 4BA, 1Q, PC, IH) were detected in
germinated quinoa for the first time.

This study further examined a range of various heat-utilizing methods.
Statistically significant differences were observed in CP among heat treatments.
Boiled quinoa flakes exhibited the highest average protein content and proved
to be a time-efficient preparation method due to reduced boiling time. The
lowest mean values of CP were associated with roasting and boiling. Most of
the heat treatments caused a decrease in TPC and AA in comparison to the raw
sample. An exception to this trend was microwaving which strongly enhanced
the overall TPC of the quinoa sample and the content of several metabolites
(CFA, KMP, NAR, QCE, RUT, and SA).

It can be concluded that different processing methods influenced the nutritional
content and composition of quinoa differently. The specific effects varied
depending on the processing technique, duration of treatment, compound
measured, and genotype. Nonetheless, further research is warranted to elucidate
the underlying mechanisms driving these changes. The alterations observed in
this study emphasize the importance of considering those variables in
optimizing the processing standards used for quinoa to obtain the best
nutritional profile of the final food product. Therefore, this knowledge
contributes to the development of processing techniques that preserve or
enhance the nutritional value of quinoa and promote its utilization as a source
of health-promoting compounds in human diets.

Supplementary Information: The online version contains supplementary material
available at https://doi.org/10.1007/s00217-024-04466-3.
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5. Quinoa leaves as a promising source of
nutritional compounds
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5.1. Introduction

Quinoa has long been celebrated for its nutritional prowess. While
overshadowed by the prominence of quinoa seeds, the utilization of quinoa
leaves persisted predominantly in regions of quinoa origin, where it is
traditionally used as a vegetable in salads and soups (Angeli et al., 2020).
However, recent nutritional analyses have highlighted the potential for
integrating quinoa leaves into the modern human diet (Gémez et al., 2024;
Villacrés et al., 2022).

Quinoa leaves contain a wealth of phytochemicals, which contribute to their
nutritional and health-promoting properties. These phytochemicals include but
are not limited to phenolic acids such as coumaric acid, ferulic acid, or gallic
acid, and a variety of flavonoids, such as isorhamnetin, quercetin, or rutin (Lin
et al., 2019). Additionally, there are approximately 15 monoterpenoids, more
precisely monocyclic monoterpenoids, isolated exclusively from quinoa leaves
(Dembitsky et al., 2008).

As reported by Gawlik-Dziki et al. (2015), extracts from quinoa leaves possess
strong antioxidant capacity and high bioavailability of phenolic compounds,
hence underlining its potential in cancer treatment. Additionally, quinoa leaves
are rich in bioavailable minerals (Stoleru et al., 2022a), vitamin E, and
carotenoids (Tang et al., 2014). They are also great sources of protein with a
well-balanced composition of essential amino acids.

Although leaves of quinoa may lack sufficient content of carbohydrates and
lipids (Pathan et al., 2019), their abundance in other nutrients makes them an
appealing component in food production with the ability to effectively fortify
common food products like wheat flour and bread (Gawlik-Dziki et al., 2015;
Swieca et al., 2014) or replace other nutritionally poorer leafy vegetables such
as spinach, lettuce and rucola (Gémez et al., 2024; Stoleru et al., 2022a;
Vazquez-Luna et al., 2019). Additionally, quinoa leaves could be used as an
alternative source for individuals seeking plant-based proteins or as a tool for
reducing nutritional deficiencies in rural populations (Villacres et al., 2022;
Gomez et al., 2024).

On the other hand, the commercialization of quinoa leaf products in the
European Union may face regulatory limitations due to novel food legislation.
While quinoa seeds are not classified as a novel food since they have been used
for human consumption to a significant degree within the Union before 15 May
1997, quinoa leaves require authorization under the EU's novel food regulation
(Food and Feed Information Portal Database, 2023). To obtain this status, it is
necessary to conduct a thorough assessment of the leaves' safety, nutritional
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profile, and potential allergenicity. Expanding our understanding of quinoa leaf
cultivation under specific conditions could support their successful introduction
as a novel food in Europe, in accordance with Regulation (EU) 2015/2283.

Although quinoa leaves may possess extraordinary nutritional quality, they
might be, to some extent, affected by variables, such as sowing date, harvest
date, and genotype (Adamczewska-Sowinska et al., 2021; Gomez et al., 2024;
Stoleru et al., 2022b). Unluckily, the comprehensive research shedding light on
this matter is still insufficient. Hence, this chapter aimed to explore 66 different
quinoa genotypes and assess the protein content, antioxidant activity, and total
phenolic content of their leaves. The obtained data can be further used for the
proper selection of genotypes with preferred traits that will contribute to a
diversified and balanced diet.

5.2.  Materials and methods

5.2.1. Plant material

A total of 66 quinoa accessions were subjected to analysis. All the accessions
were provided by the U.S. National Plant Germplasm System operated by
USDA. During the year 2021, the genotypes were sown on the experimental
fields of the Crop Research Institute in Prague — Ruzyng, Czech Republic. All
accessions were sown in two rows of 1 m in length, 25 cm apart, and 50 seeds
per row. In each studied year, the original samples provided by the National
Plant Germplasm System were sown. No pesticide or fungal control was
applied. The leaves were collected 9 weeks after the sowing at the beginning of
the flowering stage. The collection was realized from randomly selected plants
and multiple positions on each plant within each experimental plot. Samples
were further dried and stored for further analysis.

5.2.2. Sample preparation and chemical analysis

Dried quinoa leaves were milled with an IKA A1l basic mill (IKA-Werke,
Staufen, Germany), and the powdered samples were stored in a dark cold place
(4°C) in well-sealed plastic bags. The dry weight (DW) content of leaf samples
(5 g) was further dried in an electric hot-air drier at 105°C for 4 h, according to
the standard method (American Association of Cereal Chemists 1999). The
content of crude protein from each sample was determined using the classic
Kjeldahl mineralization method and calculated with a conversion factor of 6.25
(CNS EN ISO 20483 (46 1401),2014). The protein content measurements were
done in two replicates. The results were expressed as % in DW. Total phenolic
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content (TPC) was determined using the Folin—Ciocalteau reagent according to
Holasova et al., (2002) with slight modifications. The results of the TPC
analysis were expressed in grams of gallic acid equivalent (GAE) per kilogram
of sample DW (GAE g/kg DW). The antioxidant activity (AA) of the samples
was determined using the DPPH assay (Sensoy et al., 2006). The results of the
DPPH assay were expressed in millimoles of Trolox equivalent (TE) per gram
of sample DW (umol TE/g DW).

5.2.3. Statistical analysis

Statistical analysis was done in the GraphPad Prism software (GraphPad
Software 2024) and Microsoft Office Excel v. 2016. A one-way analysis of
variance (ANOVAL) was applied to the data to test whether there was a
significant effect of genotypes in evaluated traits. To compare each accession
concerning each descriptor, the means along with the standard deviations for
each descriptor were calculated separately for each accession and year of
observation. Boxplots were also generated to compare the distribution of values
among individual genotypes. The performance of studied genotypes in selected
traits (protein content, antioxidant activity, total phenolic content) was
calculated using the Z-score normalization method. By employing this method,
the data were fairly compared across studied parameters.

5.3. Results and discussion

5.3.1. Crude protein content

The investigation of crude protein content (PC) unveiled significant variations
among the analyzed quinoa genotypes. Notably, the lowest value of PC was
reported for genotype "QQ57A" (11.99 + 0.03% in DW), while the highest PC
was attained by genotypes 'DE-1" (27.60 + 0.24% in DW) and "Rosa Junin’
(26.33 £0.17% in DW).

Despite the variability, the PC values in the genotypes evaluated in our
investigation exceeded those reported for other commonly consumed leafy
vegetables, such as spinach, kale, or amaranth, that reach PC values of around
3% (USDA, 2021). Furthermore, the protein content in quinoa leaves surpassed
the highest values previously reported for quinoa seeds (20% in DW)
(Dostalikova et al., 2023; Hlasna Cepkova et al., 2022). Nearly 38% of the
samples surpass the protein threshold of 20% in DW. Conversely, the
remaining 62% of the samples exhibited protein content values below this
threshold.
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Previous studies have reported variable PC values in quinoa leaves. Pathan and
Siddiqui (2022) documented notably high protein content ranging between
28.2% and 37.0% in DW, in leaves collected in 30-45 days after germination.
Similarly, Rodriguez Gémez et al. (2024) reported comparable values of 36—
37% in DW in leaves harvested approximately 20 days post-emergence. Aside
from the genotype, the age of the leaves appears to be another critical factor
influencing the overall PC, potentially elucidating the relatively lower values
observed in our study, where leaf samples were approximately 63 days old.
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5.3.2. Total phenolic content and antioxidant activity

Phenolic compounds, a diverse class of secondary metabolites ubiquitous in the
plant kingdom, play a pivotal role in plant defense mechanisms and exert
significant antioxidant properties due to their ability to scavenge free radicals
(Lin et al., 2019). In the context of quinoa seeds, the accumulation of phenolic
compounds is linked to several factors, including agro-environmental
conditions, stress, and genetic makeup (Granado-Rodriguez et al., 2021;
Reguera et al., 2018). While comprehensive elucidation of these processes in
quinoa leaves is lacking, prior investigations have suggested cultivar variability
and harvest period as influential determinants of phenolic content (Stoleru et
al., 2022b).

Total phenolic content (TPC) and antioxidant activity (AA) in this study were
both significantly affected by the studied genotype. The TPC ranged between
117.96 + 3.60 (genotype "Leipzig’) and 502.71 + 3.35 GAE g/kg DW in
genotype ‘Isluga A" (Figure 5.2). Notably, the TPC valued in quinoa leaves fall
within the results reported by Pathan and Siddiqui (2022), but they are
significantly lower as opposed to Gomez et al. (2024) and Villacres et al.
(2022).
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Regarding AA, the values ranged between 12.35 + 0.68 (genotype
‘Cohamamba B") and 59.83 + 6.18 umol TE/g DW (genotype '‘Red Head A")
(Figure 5.3). Relatively high levels of AA potentially correlate with the
abundance and composition of bioactive compounds, such as ferulic acid,
hydroxycinnamic acid, quercetin-3-rutinoside, and flavonoids that are
presented in notable amounts within quinoa leave (Gémez et al., 2024).

Genotypes were further evaluated using the Z-score normalization method. The
results revealed that genotypes ‘Tsluga A’, "Kcoito A’, "Faro (Prague)” and 'Red
Head A’ displayed above-average performance in all three studied parameters,
thus making them promising candidates suitable for further cultivation and
investigation. Oppositely, genotypes "Dave 407", "Cahuil A’, 'Bianra de Juny’,
and 'QQ97" had the poorest performance among studied genotypes.
Nevertheless, further research is required to elucidate the fluctuations of
obtained values due to the interactions between genotype and environment.

Beyond their undisputed nutraceutical properties and potential use in food
production and fortification, quinoa leaves may also play a significant role in
sustainable agriculture. As reported previously, leafy vegetables can be
cultivated under natural or artificial lighting, removing seasonal restrictions on
their growth (Zhang et al., 2020) and they can thrive under various cultivation
modes such as hydroponics, substrate, or soil (Fu et al., 2020; Zha et al., 2024).
In the case of quinoa leaves specifically, harvesting can be realized in
approximately one month after sowing (Wan et al., 2022).
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5.4. Conclusion

Quinoa leaves recently emerged as an alternative food source with exceptional
nutritive properties offering potential avenues for addressing dietary
deficiencies and promoting sustainable food systems. Beyond their nutritional
significance, quinoa leaves hold promises for future agriculture, offering
flexibility in cultivation practices and seasonal independence.

The investigation into the crude protein content, total phenolic content, and
antioxidant activity of quinoa leaves provided valuable insights into genotype-
specific variations and performance in studied traits. Notably, certain genotypes
('Tsluga A’, 'Kcoito A’, 'Faro (Prague)” and '‘Red Head A") demonstrated
exceptional performance across all parameters, suggesting their suitability for
further cultivation and investigation. Conversely, genotypes with lower
performance indicate areas for potential improvement and further research to
understand the underlying factors influencing nutrient composition. In essence,
our study underscored the benefits of quinoa leaves and their potential to
contribute to a healthy diet. However, further research is warranted to ensure
the optimization of quinoa leaf production for nutraceutical purposes.
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6. Assessment of quinoa germplasm through
seed storage protein profiling
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6.1. Introduction

Storage seed proteins (SSP) are a class of proteins synthesized by plants and
accumulated within the seeds during the maturation phase of seed development
(Wakasa & Takaiwa, 2013). They play a vital role in a variety of plant
functions. Primarily, they serve as readily available storage reserves of energy,
nutrients, and building blocks for growth and development during germination
and early stages of seedling establishment (Fujiwara et al., 2002). Additionally,
SSPs are involved in plant defense mechanisms against pathogens and abiotic
stresses (Jain, 2023).

Osborne’s classification divided SSP based on solubility into albumins,
globulins, prolamins, and glutelins. Unlike cereals, albumins and globulins are
the major protein fractions in quinoa seeds, occupying over 50% of the total
protein in the seed (Tavano et al., 2022; Wang et al., 2020). Glutelins represent
the third largest fraction, ranging from 22% to 34% of the total protein content.
Lastly, the prolamin fraction is the least abundant, ranging around
approximately 2%—7% (Sobota et al., 2020; Tavano et al., 2022).

The albumin fraction is notably rich in cysteine, arginine, histidine, and lysine,
although it is relatively deficient in methionine. In contrast, the globulin
fraction contains a higher level of methionine, along with glutamic acid,
aspartic acid, arginine, serine, or leucine (Dakhili et al., 2019). The specific
amino acid composition and secondary structure of globulins contribute to their
superior digestibility compared to albumins (Ghumman et al., 2021).

Quinoa protein is a good precursor of bioactive peptides, which are primarily
derived from albumin and globulin fractions. These peptides are released
through processes such as gastrointestinal digestion, enzymatic hydrolysis, or
fermentation (Guo et al., 2021). Studies have shown that quinoa-derived
peptides exhibit wvarious biological activities, including antioxidant,
hepatoprotective, and anti-inflammatory effects (Tavano et al., 2022; Ren et al.,
2023). Furthermore, due to its low prolamin content, quinoa is a valuable
nutrient source for individuals with celiac disease or gluten intolerance (Pefas
etal., 2014).

As interest in quinoa continues to grow, there is a need to evaluate its genetic
diversity. The electrophoretic separation of SSP is a very effective, cheap, and
easily accessible method (Polisenska et al., 2011) that is commonly used for
genotype identification in cereals, legumes, and other crops (Kumar et al.,
2018; Lazeetal., 2019; Liu etal., 2010; Mukhlesur & Hirata, 2004). In the case
of quinoa, several studies were conducted to describe its SSP profile
(Elsohaimy et al., 2015; Ghumman et al., 2021; Pefias et al., 2014), however,
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none of them compared a larger number of quinoa accessions of different
cultivation years.

This chapter focused on investigating the SSP profiles of 32 quinoa genotypes
cultivated over three consecutive years to elucidate the allelic variations in SSP
across different genotypes and assess the impact of cultivation years on protein
profile. Evaluation and conservation of quinoa genetic diversity is paramount
for developing improved cultivars that are resilient to environmental stressors
and meet the nutritional needs of diverse populations. Hence, these results hold
implications for further quinoa breeding programs and preservation strategies
of genetic resources.

6.2.  Methodology

6.2.1. Plant material

A total of 32 quinoa samples were involved in the study, sourced from the U.S.
National Plant Germplasm System operated by USDA. Samples were
cultivated for three consecutive years, from 2018 to 2020, on the experimental
fields of Crop Research Institute in Prague — Ruzyné, Czech Republic. Each
accession was sown in two rows, each 1 meter in length and spaced 25 cm apart,
with 50 seeds per row. No pesticide or fungal control measures were applied to
the experimental plots.

6.2.2. Sample preparation and extraction of seed storage protein

Quinoa seeds underwent milling using an IKA A1l basic mill (IKA-Werke,
Staufen, Germany) and were subsequently stored in sealed plastic bags in a
dark, cold environment at 4°C. For the extraction of SSP, 0.02 g of quinoa flour
was combined with 0.25 ml of a solvent comprising gel buffer 6.8 (0.25 M Tris
+ HCI at pH 6.8), 10% (w/v) SDS (sodium dodecyl sulfate), glycerol, 2-
mercaptoethanol, and distilled water. All samples were allowed to be extracted
at room temperature for 2 hours. Then, samples were placed into boiling water
for 2 minutes. Afterward, they were centrifuged (Universal 32R Hettich
Centrifugen, Germany) at 15,000 rpm for ten minutes, and the resulting
supernatant was then transferred into new tubes. This process was conducted in
duplicate for each genotype. Samples were then refrigerated before analysis.

6.2.3. Storage seed protein separation

SSP separation was carried out using SDS-PAGE (sodium dodecyl sulfate
polyacrylamide gel electrophoresis), following the method outlined by
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Laemmli (1970) with minor adjustments. A polyacrylamide gel (180 x 160 x
0.75 mm) was prepared, consisting of a 12% (w/v) resolving gel at pH 6.8 and
a 4% (w/v) stacking gel at pH 8.8 (Table 6.1).

Table 6.1 Chemical composition of the SDS-PAGE gel

Resolving gel 12% Stacking gel 4%

29 ml Acrylamide and Bis solution (Bio-Rad, 4 ml Acrylamide and Bis solution (Bio-Rad,
Germany) Germany)

63 ml Tris 8.8 (Sigma-Aldrich, USA) 13.4 ml Tris 6.8 (Sigma-Aldrich, USA)
0.72 ml 10% SDS (Sigma-Aldrich, USA) 0.26 ml 10% SDS (Sigma-Aldrich, USA)

7 ml Distilled water 8.8 ml Distilled water

0.72 ml 10% Ammonium persulfate 0.26 ml 10% Ammonium persulfate

42.6 pl TEMED (Sigma-Aldrich, USA) 10.6 ul TEMED (Sigma-Aldrich, USA)

Each well on the gel was loaded with 0.15 pl of extract, with two wells allocated
per genotype. Commercially purchased protein ladders (Thermo Scientific™
PageRuler™ Unstained Broad Range Protein Ladder, Thermo Fischer
Scientific Life Scientific, Czech Republic) served as molecular weight (MW)
standard markers. One well per one gel was loaded with 0.1 ul of MW marker.

Electrophoresis was performed using the vertical electrophoresis Hoefer SE
600 (Hoefer, USA) at 50 mA for 30 minutes, followed by an increase to 60 mA
for approximately three hours. Subsequently, gels were fixed in a 20% (w/v)
trichloroacetic acid solution, stained with 0.05% (w/v) Coomassie Brilliant
Blue (CBB) R250, and then bleached in distilled water to remove excess
coloration before scanning into a computer.

6.3. Results and discussion

The electrophoretic separation of SSP in 32 distinct quinoa genotypes revealed
22 allelic positions. This contrasts with the findings of Drzewiecki et al. (2003),
who identified a total of 41 bands in quinoa seed proteins yet align with the
results reported by Wang et al. (2020) and Peiias et al. (2014). The bands on the
electrophoretic gels spanned in the molecular weight (MW) range from
approximately 5 to 100 kDa, similar to the report of Van de Vondel et al.
(2020).

The majority of observed bands exhibited medium to high intensity, facilitating
their clear visualization of the electrophoretic gel. The most prevalent protein
bands across all varieties were situated within 5 to 35 kDa. Additionally, bands
of lesser abundance were observed within the molecular weight range of 48 to
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70 kDa. This range corresponds to MW of major quinoa protein fractions,
namely albumins (less than 20 kDa) (Elsohaimy et al., 2015) and globulins
(approximately 20-50 and 78 kDa) (Shen et al., 2021; Thanapornpoonpong et
al., 2008).

Although the banding profiles exhibited a relatively low level of polymorphism
among the studied genotypes, discernible differences in the presence/absence
and intensity of bands were identified, particularly within the 30-38 kDa and
48-70 kDa ranges, corresponding to globulin subunits (Figure 6.1). Similar
observations regarding varietal differences in banding patterns have been
documented by Ghumann et al. (2021).

48-70 kDa

30-38 kDa

Marker CopacabanaB  LP 128 QQO065

Figure 6.1 The example of distinct banding profile of three quinoa genotypes.
The major differences in band positions and abundance for each genotype are
marked by the yellow asterisk. Red rectangles highlight the location of the
highest variability in allelic positions

As mentioned in the beginning, evaluated genotypes were cultivated in three
consecutive years from 2018 to 2020. The weather conditions in each year are
described comprehensively in Chapter 2, subchapter 3.2.2. The comparison of
the banding profile showed that SSP was not significantly impacted by the
weather conditions in a given year. Minor variations observed across
cultivation years were primarily manifested as changes in the relative
abundance of certain bands, rather than shifts in their positions. Hence, SSP
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appears to be a reliable marker for the classification of quinoa germplasm over
time.

While other studies exploring alterations in protein banding patterns across
different cultivation years are scarce, Aloisi et al. (2016) investigated variations
in protein patterns under varying saline conditions. The authors documented
significant modifications in band positions and relative abundance, particularly
in response to a 300 mM NaCl treatment. Another factor influencing the band
pattern is germination. As noted by Jimenez et al. (2019), certain bands in
germinated samples may exhibit reduced abundance compared to non-
germinated samples due to enzymatic hydrolysis processes occurring during
germination.

Conversely, while SDS-PAGE proved valuable in discerning between different
quinoa genotypes based on their SSP profiles, it exhibited limitations in
distinguishing between genotypes with phenotypic variations since distinct
phenotypes within the same genotype yielded identical protein band patterns.

6.4. Conclusion

A total of 35 quinoa genotypes were evaluated using the electrophoretic
separation of SSP. The banding profile of quinoa SSP had a relatively low
degree of heterogeneity, but the differences in the presence, absence, and
intensity of bands within distinct quinoa genotypes were observed, primarily in
the globulin subunit. Banding patterns and band positions of quinoa SSP were
reproducible over time since they were not significantly affected by the weather
conditions of a cultivation year. Nonetheless, the method was not sensitive
enough to distinguish phenotypic variations in genotypes. Overall,
electrophoretic analysis of SSP is a helpful and reliable tool to discriminate
guinoa genotypes as a first step in evaluating quinoa genetic resources.
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7. General discussion

The escalating demand for staple foods, driven by climate change-induced
environmental pressures, underscores the urgent need to explore alternative
crops that may sustain agricultural productivity and ensure global sovereignty.
Quinoa, with its remarkable adaptability and nutritional richness, presents a
viable solution for addressing the challenges of the 21% century. As the Czech
Republic and Central Europe experience the environmental impacts of climate
change, the introduction of quinoa into these regions opens new pathways to
diversify crops and strengthen agricultural resilience. However, successful
establishment of quinoa in new climatic zones requires identifying and utilizing
superior genetic resources adaptable to new regions.

Although several studies have already evaluated various aspects of quinoa
across Europe, including its agro-morphological characteristics, yield potential,
and seed nutritional content (Craine et al., 2023; Granado-Rodriguez et al.,
2021; Matias et al., 2021, 2022; Préger et al., 2018; Reguera et al., 2018;
Tabatabaei et al., 2022; Toderich et al., 2020), many have often been
constrained by the use of a small number of genotypes and/or a lack of long-
term cultivation comparisons. Additionally, there is an insufficient number of
field experiments conducted under the environmental conditions of Central
Europe, with none in the Czech Republic. Hence, the presented doctoral
research addressed these gaps by assessing a broad range of quinoa germplasm
sourced from diverse genetic backgrounds. The main goal was to identify and
select the most promising genotypes suited for climatic conditions in the Czech
Republic, that may hold substantial potential for quinoa breeding programs in
the region.

The introduction of quinoa into Europe represents not only an opportunity, but
also a challenge for plant breeding programs, particularly in regions like the
Czech Republic where climate change and unpredictable weather conditions
poses increasing threats for traditional crops. The assessment of stable
performance therefore provides a foundation for developing locally adapted
quinoa varieties that could further support the large-scale adoption of quinoa in
this region. Additionally, the evaluation of nutritional profiles of quinoa
genotypes further positions this crop as a strategic commaodity in agricultural
development programs, addressing nutritional deficiencies and enhancing
nutritional value of the food supply in the Czech Republic.

Building upon the previous paragraph, plant-based nutrients, particularly
proteins, are highly valuable, offering numerous health benefits, such as
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reduced risks of cardiovascular disease, type 2 diabetes, and certain cancers
(Naghshi et al., 2020). From a sustainability perspective, plant protein
production has a lower environmental impact, requiring fewer resources and
generating fewer greenhouse gases than animal protein production (Poore &
Nemecek, 2018). In this study, quinoa showed the protein content between
13.44-20.01 % in DW, surpassing the values reported for cereals (USDA,
2021). Consistent and relatively high seed protein content over four years of
cultivation was observed in genotypes '‘Mint Vanilla’, 'Cahuil A’,
‘Cohamamba B’, ‘Braunschweig B’, and "Apelawa A1".

Quinoa seeds have been identified as a rich source of diverse secondary
metabolites with distinct biological activities (Tang et al., 2016b; Lin et al.,
2019; Capraro et al., 2020; Liu et al., 2020; Stikic et al., 2020; Tabatabei et al.,
2022). The findings of this thesis not only confirmed this but also highlighted
the relative under-researched nature of quinoa in this context. Notably, six
phenolic compounds (2-OH-cinnamic acid, homoorientin, luteolin, naringenin,
N-feruloyl octopamine, and 4-OH-benzaldehyde) were identified and
quantified in quinoa seeds for the first time.

The identification of bioactive compounds such as isoquercetin, quercetin, and
other phenolics, which showed low seasonal variability, adds another
dimension to quinoa’s potential as a nutritionally rich crop. Consequently, the
genotypes ‘Red Head B” and ‘Isluga A" demonstrated comprehensive results in
total phenolic content and antioxidant activity over four years of cultivation.
Therefore, these findings may enhance the breeding efforts focusing on
boosting quinoa’s value in functional food markets.

Regarding quinoa morphological characteristics, the WTS — an important
contributor to overall seed yield, was evaluated. Genotypes "‘QQ87’, 'Isluga A’
and ‘Red Head A’ displayed consistent values over multiple years of
cultivation, making them promising candidates for breeding programs aimed at
stable yield production.

While studies conducted on raw quinoa seeds provide valuable insights into
their inherent nutritional profile, it is crucial to recognize that quinoa is
primarily consumed in processed form. Such studies are essential for accurately
assessing the health benefits and dietary contributions of quinoa, ensuring that
recommendations for breeding programs are based on practical, real-world
applications. Certain processing techniques may even compensate for the
suboptimal nutritional profiles observed in quinoa cultivated under unfavorable
conditions or in genotypes with less superior nutritional characteristics.
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One promising technique addressing these issues is germination. Seed
germination has gained popularity in human diets due to its nutritional and
health benefits. It is considered eco-friendly and cost-effective method feasible
for both, home and commercial production (Ebert 2022; Oliveira et al., 2022;
Gunathunga et al., 2024). As it was assumed in the hypotheses, the results
showed that germination strongly enhanced the content of specific bioactive
metabolites in quinoa, such as rutin, quercetin, gallic acid, kaempferol, and
isorhamnetin. Nonetheless, the extent of metabolite content enhancement or
degradation occurred in a genotype-dependent manner and was further
influenced by the duration of germination, underscoring the importance of
optimizing both factors to achieve the best nutritional profile in quinoa.

While quinoa germination was found to be a beneficial preparation technique,
heat-utilizing methods are more commonly used in practise. Especially boiling
of whole quinoa seeds to make a porridge is a traditionally applied method in
many households (FAO 2011). However, our results indicated that boiling
whole seeds is not ideal for preserving protein and polyphenol content, although
it does enhance antioxidant activity. In contrast, boiling rolled quinoa flakes
proved to be a promising method for protein enhancement — a finding that has
not been extensively documented in the scientific literature. Additionally,
roasting and microwaving, although less traditional than boiling, were found to
be superior methods for improving polyphenol content. These results support
the hypothesis that different preparation methods result in varying nutritional
content and composition, and thus, selecting the appropriate processing
technique is essential to preserve key nutrients.

In situations where unfavorable environmental conditions may lead to a poor
seed harvest, an alternative approach is to cultivate quinoa specifically for its
leaves. This strategy could be particularly beneficial for farmers in Central
Europe who may face challenging growing conditions during the cultivation
period. Despite its potential, the use of quinoa leaves as a viable food source
has been largely overlooked in the scientific literature, even though their use
could increase the overall versatility of quinoa in culinary applications and in
fortifying less nutritious food products (Swieca et al., 2014; Gawlik-Dziki et al.
2015; Hu et al., 2023). Furthermore, no breeding programs have yet focused on
improving the nutritional quality of quinoa leaves, which presents a valuable
opportunity for the development of new quinoa varieties specifically cultivated
for their leaves.

Remarkably, 35% of the accessions studied in this thesis exhibited protein
values in leaves exceeding 20% in DW, surpassing the highest protein content
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observed in quinoa seeds, which aligns with the initial hypothesis. Also, the
antioxidant activity and total content of polyphenols was multiple times higher
in leaves, compared to seeds. Further evaluation of protein and polyphenol
content, alongside antioxidant activity, identified the genotypes ‘Isluga A’,
"Kcoito A’, "Faro (Prague)” and ‘Red Head A" exhibiting above-average values
across all three parameters, making them strong candidates for future breeding
efforts.

8. Conclusion and future recommendations

This dissertation has provided a comprehensive agro-morphological,
nutritional, and biochemical assessment of quinoa germplasm cultivated under
the climatic conditions of Czech Republic, with a particular focus on
identifying genotypes most suitable for this region. The research confirmed the
original hypotheses and contributed significantly to both academic
understanding and practical applications for quinoa breeding and adoption in
Central Europe. Furthermore, the detailed exploration of various processing
methods provided a foundation for the food processing industry to develop
quinoa-based products with enhanced health benefits.

With increasing focus on sustainable farming, crop diversification and food
quality in European agricultural policies, quinoa seems particularly relevant for
this region, offering both economic and nutritional benefits. Genotypes such as
‘QQ87’, 'Mint Vanilla’, "Cahuil A’, 'Isluga A" and 'Red Head A" showed
stable performance across multiple years of cultivation among selected trait,
even under the fluctuating weather patterns, that are characteristic for Czech
Republic. Hence, strategic selection and cross-breeding of specific genotypes
with desirable traits will help to expand quinoa production in this area.

In the light of above, future breeding efforts should focus on expansion and
conservation of the quinoa genetic pool sourced from diverse ecological
regions. This will ensure long-term sustainability and prevents the loss of
valuable genetic materials. Additionally, breeding programs should prioritize
the evaluation of genotypes' physiological and biochemical responses to
identify those capable of retaining its nutritional quality and ability to cope with
climatic extremities caused by global warming.

Long-term, multi-location field trials will be crucial for refining the selection
of genotypes and confirming their adaptability on a larger scale. Specifically
for the region of Central Europe, the breeding initiatives should focus on
development of varieties resistant to increasingly unpredictable weather
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conditions that may occur during the growing period. Furthermore, research
should continue to explore the potential of quinoa leaves as a food source, an
area that remains underexplored. Developing varieties specifically for leaf
production could be a novel direction for breeding programs, offering farmers
additional economic benefits and ensuring more comprehensive utilization of
the crop. In addition, future research should investigate antinutritional
compounds in quinoa leaves to ensure their safe consumption. Efforts should
also be made to standardize processing techniques that maximize the nutritional
benefits and sensory qualities of quinoa seeds and leaves, addressing both
consumer health and market demand.

In summary, the strategic selection and breeding of quinoa genotypes with
desirable traits will be essential for the successful introduction of quinoa in
Central Europe. Government policies should support these efforts by providing
incentives for farmers, promoting crop diversification, and fostering consumer
awareness of quinoa’s health benefits, thereby creating a favorable environment
for its widespread adoption.
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