ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE fakulta tropického zemědělství

Katedra tropických plodin a agrolesnictví

Laboratoř molekulární biologie

Laboratorní úlohy pro práci s přístrojem Agilent 2100 Bioanalyzer – Protokol pro DNA 1000 analýzu

Praha 2013

Poděkování

Tvorba protokolů "Laboratorní úlohy pro práci s přístrojem Agilent 2100 Bioanalyzer – protokol pro DNA 1000 analýzu" byla finančně podpořena Fondem rozvoje vysokých škol a zpracována v rámci projektu FRVŠ reg. číslo 1397/2013 "Inovace vybavení laboratoří pro výuku aplikovaných rostlinných biotechnologií".

OBSAH

1. Pravidla bezpečnosti práce v Laboratoři molekulární biologie	.4
2. Agilent DNA 1000 kit – návod k použití	. 5
Podmínky pro skladování kitu	. 5
Přístojové vybavení	. 5
Další materiálové vybavení	. 5
Příprava vzorků	. 5
3. Nastavení analýzy na přídavných zařízeních a bionalyzéru	. 6
4. Nastavení prajmovací stanice	. 6
5. Nastavení bioanalyzéru	. 6
Upravení čipového selektoru:	. 7
6. Základní úkony při měření	. 7
7. Agilent DNA 1000 – protokol analýzy	. 8
Příprava gelu (Gel-Dye Mix)	. 8
Nanášení mixu barvička-gel	. 9
Nanášení markeru	.9
Nanášení žebříku (ladder) a vzorků	10
Vložení čipu do přístroje Agilent 2100 Bioanalyzér	11
Začátek běhu čipové elektroforézy	12
Čištění elektrod po ukončení běhu elektroforézy	13
8. Kontrola vašich výsledků Agilent DNA 1000 analýzy	14
DNA 1000 výsledky žebříku (Ladderu)	14
DNA 1000 výsledky vzorků	14

1. Pravidla bezpečnosti práce v Laboratoři molekulární biologie

- Před začátkem práce v laboratoři by studenti měli znát pravidla práce a bezpečnosti v Laboratoři molekulární biologie.
- V laboratoři je zakázáno jíst, pít a kouřit.
- Studenti musí mít pláště, přezůvky a rukavice.
- Nepovolené experimenty jsou přísně zakázány.
- Udržujte laboratoř čistou a uklizenou.
- Zkontrolujte přístroje. Pokud je jakýkoliv problém s přístroji, nepoužívejte ho a informujte školitele.
- Pokud při používání část vybavení selže, okamžitě informujte školitele. Nikdy se nepokoušejte vyřešit problém sami, protože byste mohli zranit nejen sebe ale i ostatní.
- Před odchodem z laboratoře po sobě uklid pracovní plochu.
- Před ochodem z laboratoře vypněte všechny elektrické přístroje a umyjte si ruce.
- Pokud máte nějaké pochyby, zeptejte se školitele.
- Pozorně čtěte etikety.
- Nikdy přímo nepřičichávejte k látkám. Přečtěte si etiketu (pro zjištění obsahu). Nikdy neochutnávejte chemikálie!
- Zjistěte, kde je v laboratoři umístěn hasicí přístroj a zdroj vody a jak je používat.
- Zaměstnanci a studenti jsou povinni manipulovat jedovatými, těkavými a páchnoucími látkami výhradně v digestoři.
- Používané chemikálie a reagencie vracejte vždy na místo, odkud jste je vzali.
- Zvláštní opatrnosti je třeba dbát při manipulaci s otevřeným ohněm, hořlavinami, žíravinami a jedovatými látkami.
- Nehody nebo poranění hlaste ihned školiteli a v případě potřeby poskytněte okamžitě první pomoc.
- Reagenční roztoky se odlévají z reagenčních lahví na straně odvrácené od signatury tak, aby se nepoškodil štítek na láhvi. Nečitelný nápis a s tím spojená případná záměna může mít nebezpečné následky.
- Koncentrované kyseliny, zvláště kyselina sírová, se ředí vléváním kyseliny do vody. Kyselina se přilévá tenkým proudem a za stálého promíchávání roztoku skleněnou tyčinkou.
- S látkami dráždivými, páchnoucími a jedovatými (např. chlor, chloroform, sirouhlík, aj.) a s látkami snadno vznětlivými (např. benzin, aceton, aj.) se musí pracovat v dobře odsávané a zapojené digestoři.
- Toxický i netoxický odpad vyhazujte do nádob k tomu určených!
- Všichni, kteří v laboratoři pracují, budou respektovat výše uvedená pravidla a budou se řádně zapisovat do prezenční knihy.

2. Agilent DNA 1000 kit – návod k použití

Zkontrolujte, zda Agilent l	DNA 1000 kit obsahuje následující položky
DNA Chips DNA 1000 25 DNA Čipů 1 Elektrodový čistič	Chemikálie (žlutá) DNA 1000 Ladder (zelená) DNA 1000 Markers 15/1500 bp (2 lahvičky)
Syringe Kit 1 injektor 3 Spin filtrační zkumavky	 (modrá) DNA Dye Concentrate (1 lahvičky) (červená) DNA Gel Matrix (3 lahvičky)

Podmínky pro skladování kitu

- Všechny chemikálie a směsi, které jsou součástí kitu, uchovávejte při teplotě 4°C, aby nedocházelo k jejich znehodnocení
- Barvičky a směsi obsahující barvící složky uchovávejte mimo světlo. Ochranné obaly odstraňujte pouze při pipetování. Pokud jsou tyto látky vystaveny světlu, dojde k jejich znehodnocení.

Přístojové vybavení

- Čipovací prajmovací statnice (priming station)
- IKA míchadlo (vortex mixer)

Další materiálové vybavení

- Pipety (10 µl, 100 µl a 1000 µl) a kompatibilní sterilní špičky
- 0,5 ml mikrozkumavky pro přípravu vzorků
- Mikrocentrifuga

Příprava vzorků

- Pro bezchybné stanovení DNA koncentrace, celkové množství DNA ve vzorcích musí být v rozmezí 0,5-50 ng/µl. Pokud je koncentrace vzorku výrazně vyšší, musí být vzorek naředěn na doporučenou koncentraci.
- Pokud je analyzována restrikce digest, přidejte EDTA nebo zahřejte pro inaktivaci restrikčního enzymu dle pokynů výrobce. Restrikční endonukleázy v kombinaci s nechelátovými ionty kovů můžou způsobit degradaci integrovaných DNA markerů.

3. Nastavení analýzy na přídavných zařízeních a bionalyzéru.

Před začátkem přípravy protokolu pro čip, zkontrolujte, zda prajmovací stanice (priming station) a bioanalyzér jsou správně nastavené a připravené k použití.

Je nezbytné:

- při použití nového DNA kitu vyměnit injektor u čipové prajmovací stanice
- upravit spodní desku čipové prajmovací stanice
- upravit spodní svorku injektoru čipové prajmovací stanice
- upravit čip selektor bioanalyzéru
- nastavit vortex mixer
- spustit software před nanášením vzorků na čip.

POZNÁMKA: The Agilent DNA 1000 analýza je velice citlivá analýza. Čtěte pečlivě přiloženou příručku a pracujte dle pokunů.

4. Nastavení prajmovací stanice

1 Vyměňte stříkačku:

a Vyšroubujte použitou stříkačku z víka prajmovací stanice.

b Uvolněte použitou stříkačku ze svorky a vyhoďte.

c Odstraňte plastový obal z nového injektoru a zasuňte do svorky.

d Vsuňte do adaptéru a našroubujte do prajmovací stanice.

2 Nastavení základní desky:

a Otevřete čipovou prajmovací stanici zatáhnutím západky.

b Za použití šroubováku povolte šroubek na spodní straně základní desky.

c Zvedněte základní desku a uveďte opět do polohy C, utáhněte šroubek.

3 Nastavení svorky na injektoru:

a Uvolněte páčku na svorce a posuňte ji na dolní pozici.

POZNÁMKA: Pro každý kit vyměňte stříkačku.

5. Nastavení bioanalyzéru

Upravení čipového selektoru:

1 Otevřete víko bioanalyzéru a ujistěte se, že elektrodová kartridž je vsunutá do přístroje, pokud tomu tam není, otevřete západku, vyjměte kartridž a vsuňte elektrodovou kartridž.

2 Odstraňte použitý čip a uveďte čip selektor do pozice (1).

5. Základní úkony při měření

- Zacházejte a uchovávejte všechny chemikálie podle instrukcí uvedených na etiketách jednotlivých balení.
- Vyvarujte se blízkosti zdrojů prachu a jiných kontaminantů v průběhu analýz. Cizí látky v reagenciích a vzorcích nebo v přímo v čipu mohou narušit správný průběh analýz a ovlivnit výsledky.
- Uchovávejte všechna činidla a sloučeniny při teplotě 4 °C, pokud je právě nepoužíváte.
- Všechna činidla a vzorky nechte ustálit před použitím 30 minut v pokojové teplotě.
- Barvičky a směsi s barvicími látkami chraňte před světlem. Ochranný obal sundávejte pouze při pipetování. Barvičky jsou rozkládány, pokud jsou vystaveny světlu a snižuje se tak intenzita signál.

- Pipetujte vždy tak, aby špička pipety byla na dně jamky. Umístění pipety na stěnu jamky může negativně ovlivnit výsledek.
- S novým kitem vždy použijte novou stříkačku a nový čistič elektrody
- Připravený čip použijte nejpozději do 5 minut, chemické látky se mohou vypařovat a mohlo by to negativně ovlivnit výsledek.
- Nedotýkejte se Agilent 2100 bioanalyzéru v průběhu analýzy a nikdy ho neumísťujte na vibrující povrch.

6. Agilent DNA 1000 – protokol analýzy

Příprava gelu (Gel-Dye Mix)

1. DNA dye concentrate (blue ●) a DNA gel matrix (red ●) nechte před začátkem analýzy 30 minut v pokojové teplotě.

WAROVÁNÍ Nakládání s DMSO

⇒Součásti kitu obsahují látku DMSO. Protože se barvička váže na nukleové kyseliny, je potřeba s touto látkou jako potencionálním mutagenem zacházet s náležitou pozorností.

⇒Používejte rukavice a ochranu očí a pracujte dle pravidel platných pro práci v laboratoři.

⇒Nakládejte s DMSO s náležitou opatrností, jako s látkou, která usnadňuje vstup organických molekul do tkání.

- Vortexujte mikrozkumavku s modrým víčkem DNA dye concentrate (blue
) 10 sekund a centrifugujte. Ujistěte se, že DMSO je kompletně roztáté.
- Pipetujte 25 µl dye concentrate (blue) z mikrozkumavky s modrým víčkem do mikrozkumavky s červeným víčkem DNA gel matrix vial (red ●). Skladujte nadále dye concentrate při teplotě 4 °C.

- 4. Zavřete víčko mikrozkumavky, vortexujte 10 sekund. Vizuálně kontrolujte smíchání gelu a barvičky.
- 5. Přesuňte mix barvičky a gelu do horní nádobky spin filtrační zkumavky. Tuto zkumavku dejte do centrifugy a stočte 15 minut při pokojové teplotě otáčkách 6000 rpm.
- 6. Vyjměte filtr, označte mikrozkumavku s datem přípravy.

POZNÁMKA: Je důležité, aby všechny chemikálie pro následující kroky byly ustáleny v pokojové teplotě. Chraňte barvičku před světlem.

Vždy pracujte s množstvím, které je předepsané. Použití nesprávných objemů povede k nepřesným výsledkům.

Připravený mix barvičky a gelu je v dostatečném množství pro 10 čipů. Tato směs musí být spotřebován během čtyř týdnů od data přípravy.

Chraňte připravený mix barvičky a gelu před světlem a skladujte při teplotě 4 °C, pokud jej právě nepoužíváte.

Nanášení mixu barvička-gel

1 Mix gelu a barvičky nechte odstát 30 minut při pokojové teplotě. Po celou dobu chraňte mix před světlem.

2Vyjměte nový čip z obalu a umístěte tento čip do prajmovací stanice.

3 Pipetujte 9,0 µl mixu barvičky a gelu do označené jamky.

4 Nastavte časovač na 60 sekund, ujistěte se, že píst je v pozici 1 ml a zavřete prajmovací stanici. Při správném zavření prajmovaci stanice, západka cvakne.

5 Zatlačte píst injektoru směrem dolů, dokud není secvaknut svorkou.

6 Počkejte přesně 60 sekund a pak uvolněte píst ze svorky.

7 Vizuálně zkontrolujte, zda je píst zpět v pozici 0,3 ml.

8 Čekejte 5 sekund, pak pomalu natáhněte zpět píst do pozice 1 ml.

9 Otevřete čipovou prajmovací stanici.

10 Pipetujte 9,0 µl mixu barvička-gel do každé označené jamky.

POZNÁMKA: Před nanášením mixu barvička-gel, se ujistěte, že základní deska prajmovací stanice je v pozici (C) a svorka je v nejnižší pozici. (Vraťte se na stranu 7 – pro detailní vysvětlení).

Pokud pipetujete mix gelu a barvičky, ujistěte se, že jste do špičky pipety nevtáhly možné usazeniny ze dna mirkozkumavky s tímto mixem. Vkládejte špičku pipety na dno jamky čipu při rozdělovaní mixu do jamek, zabraňuje to vzniku vzduchových bublin v jamkách. Vyvarujte se umístění špičky pipety na strnu jamky, mohlo by to negativně ovlivnit výsledek.

Mix barvičky a gelu chraňte před světlem. Skladujte při 4°C pokud nepoužíváte déle jak hodinu.

Nanášení markeru

Pipetujte 5 µl z DNA markeru (green) mikrozkumavky se zeleným víčkem do jamky označené se symbolem žebříku (the ladder symbol) a do dalších 12 jamek určených pro nanášení vzorků.

POZNÁMKA: Žádná jamka nesmí zůstat prázdná, jinak běh čipové elektroforézy neproběhne správně. Do prázdné jamky přidejte 5 ěl DNA markeru (green) mikrozkumavky se zeleným víčkem plus 1 ěl deionizované vody.

Nanášení žebříku (ladder) a vzorků

1 Pipetujte 1 μl DNA ladder (yellow •) mikrozkumavka se žlutým víčkem do jamky s označením žebříku (ladder)

2 Do dalších 12 jamek pro vzorky pipetujte 1 μl vzorku nebo 1 μl deionizované vody (nepoužité jamky).

UPOZORNĚNÍ Nesprávná rychlost vortexování

Pokud je rychlost vortexování příliš vysoká, může dojít k rozlití kapalin.

⇒ Snižte rychlost vortexování na 2000 rpm!

POZNÁMKA: Pro získání optimálních výsedků, pH vzorků by se mělo pohybovat v rozmezí 6 to 9 a obsah iontů by neměl být 2x vyšší než standardního PCR pufru.

3 Časovač nastavte na 60 sekund.

4 Umístěte čip horizontálně v adaptáru IKA vortex a ujistěte se, že je čip dobře zafixovaný.

5 Vortexujte 60 sekund při otáčkách 2400 rpm.

6 Na další stránce je uvedeno, jakým způsobem vložit čip do přístroje Agilent 2100 bioanalyzér. Ujistěte se, že elektroforéza začne během 5 minut.

Vložení čipu do přístroje Agilent 2100 Bioanalyzér

1 Otevřete víko přístroje Agilent 2100 bioanalyzér.

2 Zkontrolujte, zda je správně vložená elektrodová kartridž a čip selektor je v pozici (1) (viz. "Nastavení Bioanalyzéru" strana 8).

UPOZORNĚNÍ: Citlivé elektrody a možnost poškození roztoků v jamkách. Zavírání víka silou může způsobit poškození elektrod a poškození čipu.

⇒ nezavírejte víko bioanlyzéru silou a nenechte spadnout víko na vložený čip.

3 Opatrně umístěte čip do přístroje, správná pozice čipu je jedna.

4 Opatrně zavřete víko. Kartridž s elektrodami by měla perfektně zapadnout do jamek na čipu.

5 Software screen 2100 expert ukáže pomocí zobrazených ikonek vlevo nahoře v *Instrument*, že jste vložili čip a že víko přístroje je zavřené.

Začátek běhu čipové elektroforézy

POZNÁMKA: Pro více detailních informací čtěte uživatelskou příručku 'User's Guide', která je součástí the Online Help of your 2100 expert software.

1 V Instrument vyberte požadovanou analýze z menu analýz (Assay menu).

Electrophoresis •	demo
C:j]Demo Eukaryote Total RNA Nano.xsy	dsDNA
	other
	protein
	RNA-

2 Přijměte stávající *File Prefix* nebo jej změňte. Data se budou automaticky ukládat do souboru se jménem a příponou, kterou jste právě zadali. Současně je možné upravit umístění ukládání souboru a počet vzorků, které budou analyzovány.

Destination		
Oefault	C:\alyzer\2100 expert\	Data\2005-11-22
C Custom	C:\alyzer\2100 expert\	Data\2005-11-22
File Prefix	2100 expert	(max 16 characters)
File Prefix	2100 expert	(max 16 characters)
 Data Acquis 	sition Parameters	

3 Zmačkněte tlačítko *Start* v pravé horní části okna a spusťte analýzu. Příchozí signály jsou zobrazovány v *Instrument* context.

🚫 Start

4 Pro vkládání informací o vzorcích jako jména vzorků a obsah, vyberte *Data File* link, který je zvýrazněný modře nebo jděte do *Assay context* a vyberte *Chip Summary* tab. Vyplňte je jména vzorků do tabulky.

		1 .				
	Sample Name	Sample Comment	Status	Observation	Result Label	Result Col
►	Sample 1					
2	Sample 2					
3	Sample 3					
4	Sample 4					
5	Sample 5					
6	Sample 6					
7	Sample 7					
8	Sample 8					
9	Sample 9					
10	Sample 10					
11	Sample 11					
12	Sample 12					
	Chier I an a	Descent Kit Let				
	Chip Loc #	Reagent Kit Lot	*			
Chip	Comments :					
c	la Tafana Mar	du Tofornation				
samj	Die mitormation Scu	uy Information				

5 Pro kontrolu signálu se vraťte do Instrument.

6 Po ukončení běhu čipové elektroforézy, vyjměte čip a zlikvidujte ho dle laboratorních standard.

UPOZORNĚNÍ Kontaminace elektrod

Při zanechání čipu v bioanalyzéru delší dobu než 1 hodina (např. přes noc) může dojít ke kontaminování elektrod.

⇒ Bezprostředně po dokončení běhu elektroforézy vyjměte čip.

Čištění elektrod po ukončení běhu elektroforézy

Ihned po dokončení analýzy, vyjměte použitý čip z přístroje a zlikvidujte dle standardních laboratorních pravidel. Poté prověďte následující úkony tak, aby bylo zabezpečena čistota elektrod (tzn. že na elektrodách nezůstala žádná rezidua z poslední analýzy).

UPOZORNĚNÍ: Kapalina může zůstat mezi elektrodami

⇒ Nikdy neplňte elektrodový čistič nadbytečným množstvím vody.

POZNÁMKA: Použijte nový elektrodový čistič s každým novým kitem.

Po 5 analýzách vyprázdněte a znovu naplňte elektrodový čistič.

Po 25 analýzách, nahraď te použitý elektrodový čistič novým.

Pokud měníte typ analýzy, je nezbytné více důkladné vyčištění mezi těmito analýzami.

V kapitole údržba na CD Maintenance and Troubleshooting Guide najdete detaily v části Online Help of the 2100 bioanalyzer software.

- 1 Pomalu a opatrně naplňte jednu jamku elektrodového čističe 350 µl deionizované vody
- 2 Otevřete víko a umístěte elektrodový čistič do přístroje Agilent 2100 bioanalyzér.
- 3 Zavřete poklop a nechte ho zavřený přibližně 10 sekund.
- 4 Otevřete víko a vyndejte elektrodový čistič.
- 5 Počkejte dalších 10 sekund, dokud se voda z elektrod nevypaří před zavření víka.

POZNÁMKA:

Po 5 analýzách vyprázdněte a znovu naplňte elektrodový čistič. Po 25 analýzách, nahraď te použitý elektrodový čistič novým.

POZNÁMKA:

Pokud měníte typ analýzy, je nezbytné více důkladné vyčištění mezi těmito analýzami.V kaptitole údržba na CD Maintenance and Troubleshooting Guide najdete detaily v části Online Help of the 2100 bioanalyzer software.

7. Kontrola vašich výsledků Agilent DNA 1000 analýzy

DNA 1000 výsledky žebříku (Ladderu)

Pro kontrola výsledku běhu elektroforézy, vyberte the Gel or Electropherogram tab v *Data* context. Elektroforeogram žebříku (ladderu) by měl ukázat podobné výsledky, které jsou uveden v obrázku 1.

Obrázek 1 DNA 1000 ladderu

Hlavní vlastnosti správně proběhlé analýzy.

- 13 píků pro DNA 1000 žebřík.
- Všechny píky dobře rozlišené a vyobrazené.
- Rovná základní čára.
- Správná identifikace obou markerů.

Pokud je elektroforeogram žebříku neukazuje výsledek podobný obrázku 1, podívejte se do 2100 Expert Maintenance and Troubleshooting Guide.

DNA 1000 výsledky vzorků

Pro kontrolu výsledků jednotlivých vzorků, vyberte jméno vzorků v seznamu všech vzorků a zvýrazněte *Results* sub-tab. V okně by se měl zobrazit elektroforeogram vzorků a měl by být podobný jako na obrázku 2.

Obrázek 2 DNA píky pří správném průběhu elektroforézy

Hlavní vlastnosti správně proběhlé analýzy.

• Všechny zobrazené píky by měli být umístěné mezi horním a dolním markerem. Pokud se některé píky vyskytují mimo toto rozhraní, podívejte s do 2100 Expert User's Guide or Online Help.

- Rovná základní čára.
- Marker je přečte při nejmenším 3 fluorescenčními jednotkami vyššími než u základní čáry.
- Píky obou markerů musí být správně rozlišeny (v závislosti na vzorku).